A one-dimensional numerical model is developed to predict the long-range variations of vertical temperature, density, and salinity profiles in the Dead Sea, which is a highly saline large water body. The model utilizes the continuity, momentum, energy, and mass transfer equations, while taking into account the influence of the wind. The partial differential equations were solved numerically by means of explicit finite differences method. Simulation results were verified by comparison to measured data. In addition, the algorithm evaluates the evaporation rate from the Dead Sea which is an important parameter in several engineering projects under planning, such as the Mediterranean-Dead Sea conduit and the construction of floating salt gradient solar ponds for power generation.

This content is only available via PDF.
You do not currently have access to this content.