This paper deals with the material testing under extreme conditions, mainly around space programs, using the French CNRS (Centre National de la Recherche Scientifique) solar facilities for planetary entry (Earth, Mars), solar corona in situ exploration, and cryogenic propulsion. For these purposes, different facilities were developed around the various solar concentrators: MESOX (Moyen d’Essai Solaire d’OXydation), for the study of the atomic oxygen recombination at the surface of heated materials and the oxidation kinetics of ceramics under plasma atmospheres up to 2300 K. (Some results are given for several materials.); MEDIASE (Moyen d’Essai et de DIagnostic en Ambiance Spatiale Extre^me), for the thermophysical characterization of thermal shield materials up to 2400°K under high vacuum: mass-loss kinetics, mass spectrometry (neutral and ionic species) and thermo-radiative properties (total or spectral directional emissivity). (Results are presented for various carbon/carbon composite materials.); and DISCO (DISpositif de Caracte´risation Optique), for the measurement of changes in the reflectivity of materials at temperatures up to 2500°K and its correlation with the surface behavior (aging, ablation and oxidation). Results concerning a copper alloy used for the combustion chamber of cryogenic motors are given.

1.
Scott, C. D., 1981, “Catalytic Recombination of Nitrogen and Oxygen on High-Temperature Reusable Surface Insulation,” Aerothermodynamics and Planetary Entry-Progress in Astronautics and Aeronautics, A. L. Crosbie (ed.), 77, pp. 192–212.
2.
Jumper
,
E. J.
, and
Seward
,
W. A.
,
1994
, “
Model for Oxygen Recombination on Silicon Dioxide Surfaces
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
460
465
.
3.
Balat
,
M. J. H.
,
1996
, “
Determination of the Active-to-Passive Transition in the Oxidation of Silicon Carbide in Standard and Microwave-Excited Air
,”
J. Eur. Ceram. Soc.
,
16
, pp.
55
62
.
4.
Balat
,
M.
,
Czerniak
,
M.
, and
Badie
,
J. M.
,
1999
, “
Ceramics Catalysis Evaluation at High Temperature Using Thermal and Chemical Approaches
,”
J. Spacecr. Rockets
,
36
(
2
), pp.
273
279
.
5.
Lacombe
,
A.
, and
Lacoste
,
M.
,
1994
, “
Investigation of C/SiC Breaking-Point Under Arc Jet Environment at NASA-JSC
,”
High Temperature Chemical Processes
,
3
, pp.
285
296
.
6.
Eriksson
,
G.
,
1975
, “
Thermodynamics Studies of High Temperature Equilibria
,”
Chem. Scr.
,
8
, pp.
100
103
.
7.
Balat
,
M.
,
Berjoan
,
R.
,
Pichelin
,
G.
, and
Rochman
,
D.
,
1998
, “
High-Temperature Oxidation of Sintered Silicon Carbide Under Pure CO2 at Low Pressure:Active-Passive Transition
,”
Appl. Surf. Sci.
,
133
, pp.
115
123
.
8.
Balat
,
M.
, and
Berjoan
,
R.
,
2000
, “
Oxidation of Sintered Silicon Carbide Under Microwave-Induced CO2 Plasma at High Temperature:Active-Passive Transition
,”
Appl. Surf. Sci.
,
161
, pp.
434
442
.
9.
Balat
,
M.
,
Czerniak
,
M.
, and
Badie
,
J. M.
,
1997
, “
Thermal and Chemical Approaches for Oxygen Catalytic Recombination Evaluation on Ceramic Materials at High Temperature
,”
Appl. Surf. Sci.
,
120
, pp.
225
238
.
10.
Nasuti
,
F.
,
Barbato
,
M.
, and
Bruno
,
C.
,
1996
, “
Material-Dependent Catalytic Recombination Modeling for Hypersonic Flows
,”
J. Thermophys. Heat Transfer
,
10
(
1
), pp.
131
136
.
11.
Daiss
,
A.
,
Fru¨hauf
,
H. H.
, and
Messerschmid
,
E. W.
,
1997
, “
Modeling of Catalytic Reactions on Silica Surfaces with Consideration of Slip Effects
,”
J. Thermophys. Heat Transfer
,
11
(
3
), pp.
346
352
.
12.
Coburn
,
J. W.
, and
Chen
,
M.
,
1980
, “
Optical Emission Spectroscopy of Reactive Plasmas: A Method for Correlating Emission Intensities to Reactive Particle Density
,”
J. Appl. Phys.
,
51
, pp.
3134
3136
.
13.
Granier
,
A.
,
Che´reau
,
D.
,
Henda
,
K.
,
Safari
,
R.
, and
Leprince
,
P.
,
1994
, “
Validity of Actinometry to Monitor Oxygen Atom Concentration in Microwave Discharges Created by Surface Wave in O2-N2 Mixtures
,”
J. Appl. Phys.
,
75
, pp.
104
114
.
14.
Pagnon
,
D.
,
Amorim
,
J.
,
Nahorny
,
J.
,
Touzeau
,
M.
, and
Vialle
,
M.
,
1995
, “
On the Use of Actinometry to Measure the Dissociation of O2 DC Glow Discharges: Determination of the Wall Recombination Probability
,”
J. Appl. Phys., J. Phys. D
,
28
, pp.
1856
1868
.
15.
Booth
,
J. P.
,
Joubert
,
O.
,
Pelletier
,
J.
, and
Sadeghi
,
N.
,
1991
, “
Oxygen Atoms Actinometry Reinvestigated:Comparison with Absolute Measurements by Resonance Absorption at 130 nm
,”
J. Appl. Phys.
,
69
, pp.
618
626
.
16.
Cacciatore
,
M.
,
Rutigliano
,
M.
, and
Billing
,
G. D.
,
1999
, “
Eley-Rideal and Lamgmuir-Hinshelwood Recombination Coefficients for Oxygen on Silica Surfaces
,”
J. Thermophys. Heat Transfer
,
13
(
2
), pp.
195
203
.
17.
Kim
,
Y. C.
, and
Boudart
,
M.
,
1991
, “
Recombination of O, N and H Atoms on Silica: Kinetics and Mechanism
,”
Langmuir
,
7
, pp.
2999
3005
.
18.
Rakich, J. V., Stewart, D. A., and Lanfranco, M. J., 1982, “Results of a Flight Experiment on the Catalytic Efficiency of the Space Shuttle Heat Shield,” AIAA Paper 82-0944.
19.
Stewart, D. A., Rakich, J. V., and Lanfranco, M. J., 1983, “Catalytic Surface Effects on Space Shuttle Thermal Protection System During Earth Entry of Flights STS-2 Through STS-5,” Tech. Report, NASA CP-2283, pp. 827–845.
20.
Deutschmann
,
D.
,
Riedel
,
U.
, and
Warnatz
,
J.
,
1995
, “
Modeling of Nitrogen and Oxygen Recombination on Partial Catalytic Surfaces
,”
ASME J. Heat Transfer
,
117
, pp.
495
501
.
21.
Wiley
,
R. J.
,
1993
, “
Comparison of Kinetics Models for Atom Recombination on High-Temperature Reusable Surface Insulation
,”
J. Thermophys. Heat Transfer
,
7
(
1
), pp.
55
62
.
22.
Kolodziej, P., and Stewart, D. A., 1987, “Nitrogen Recombination on High-Temperature Reusable Surface Insulation and the Analysis of its Effect on Surface Catalysis,” AIAA paper, 87–1637.
23.
Paulmier
,
T.
,
Balat-Pichelin
,
M.
,
Le Que´au
,
D.
,
Berjoan
,
R.
, and
Robert
,
J. F.
,
2001
, “
Physico-Chemical Behavior of Carbon Materials Under High Temperature and Ion Irradiation
,”
Appl. Surf. Sci.
,
180
, pp.
227
245
.
24.
Millard, J. M., Miyake, R. N., Dirling, R. B., Rolfo, A., and Roye`re, C., 1983, “Starprobe Thermal Shield Evolution,” Proc. Int. Symposium on Environmental & Thermal Systems for Space Vehicles, Toulouse (France), ESA SP-200 (European Space Agency), pp. 531–560.
25.
Randolph
,
J.
,
Ayon
,
J.
, et al.
,
1999
, “
The Solar Probe Heat Shield Antenna Materials Characterization
,”
Carbon
,
37
, pp.
1731
1739
.
26.
Hernandez
,
D.
,
Antoine
,
D.
,
Olalde
,
G.
,
Gineste
,
J. M.
, and
Cle´ment
,
M.
,
1999
, “
Optical Fibre Reflectometer Coupled with a Solar Concentrator to Determine Solar Reflectivity and Absorptivity at High Temperature
,”
ASME J. Sol. Energy Eng.
,
121
, pp.
31
35
.
27.
Hernandez
,
D.
,
Olalde
,
G.
,
Beck
,
A.
, and
Milcent
,
E.
,
1995
, “
Bi-Color Pyro-Reflectometer Using an Optical Fibre Probe
,”
Rev. Sci. Instrum.
,
66
(
12
), pp.
5548
5551
.
28.
Markham
,
J. R.
,
Lewandowski
,
A.
, et al.
,
1996
, “
FT-IR Measurements of Emissivity and Temperature During High Flux Processing
,”
ASME J. Sol. Energy Eng.
,
118
, pp.
20
29
.
29.
Halpern
,
B.
, and
Rosner
,
D. E.
,
1978
, “
Chemical Energy Accommodation at Catalyst Surfaces
,”
J. Chem. Soc. A
,
74
, pp.
1883
1912
.
You do not currently have access to this content.