The effect of laminar separation bubbles on the surface pressure distribution and aerodynamic force characteristics of a horizontal axis wind turbine airfoil is studied numerically. The NREL S809 airfoil for stall-controlled horizontal-axis wind turbines is analyzed at a chord Reynolds number of 1.0×106. For all flow conditions involving laminar separation in the present study, bubble-induced vortex shedding is observed. This flow phenomenon causes significant oscillations in the airfoil surface pressures and, hence, in the airfoil-generated aerodynamic forces. The computed time-averaged pressures compare favorably with wind-tunnel measurements.

1.
Haines, A. B., 1994, “Scale Effects on Aircraft and Weapon Aerodynamics,” AGARD AG 323.
2.
Van den Berg, B., 1969, “Reynolds Number and Mach Number Effects on the Maximum Lift and Stalling Characteristics of Wings at Low Speeds,” NLR TR 69025U.
3.
Jones
,
B. M.
,
1938
, “
Stalling
,”
J. R. Aeronaut. Soc.
,
38
, pp.
747
770
.
4.
McCullough, G. B., and Gault, D. E., 1951, “Examples of Three Representative Types of Airfoil-Section Stall at Low Speed,” NACA TN 2502.
5.
Gault, D. E., 1957, “A Correlation of Low-Speed, Airfoil-Section Stalling Characteristics with Reynolds Number and Airfoil Geometry,” NASA TN 3963.
6.
Gaster, M., 1966, “The Structure and Behavior of Laminar Separation Bubbles,” AGARD CP 4, pp. 813–854.
7.
Horton, H. P., 1968, “Laminar Separation Bubbles in Two- and Three-Dimensional Incompressible Flow,” Ph.D. Thesis, University of London.
8.
Horton, H. P., 1969, “A Semi-Empirical Theory for the Growth and Bursting of Laminar Separation Bubbles,” British ARC CP 1073.
9.
Pauley
,
L. L.
,
Moin
,
P.
, and
Reynolds
,
W. C.
,
1990
, “
The Structure of Two-Dimensional Separation
,”
J. Fluid Mech.
,
220
, pp.
397
411
.
10.
Elli, S., and van Dam, C. P., 1991, “The Influence of a Laminar Separation Bubble on Boundary-Layer Stability,” AIAA Paper No. 91-3294.
11.
Van Dam, C. P., and Elli, S., 1992, “Simulation of Nonlinear Tollmien-Schlichting Wave Growth Through a Laminar Separation Bubble,” Instability, Transition, and Turbulence, M. Y. Hussaini, A. Kumar, and C. L. Streett, eds., Springer-Verlag, pp. 311–321.
12.
Ripley
,
M. D.
, and
Pauley
,
L. L.
,
1993
, “
The Unsteady Structure of Two-Dimensional Steady Laminar Separation
,”
Phys. Fluids A
,
5
(
12
), pp.
3099
3106
.
13.
Lin
,
J. C.
, and
Pauley
,
L. L.
,
1996
, “
Low-Reynolds Number Separation on an Airfoil
,”
AIAA J.
,
34
(
8
), pp.
1570
1577
.
14.
McGhee, R. J., Walker, B. S., and Millard, B. F., 1988, “Experimental Results for the Eppler 387 Airfoil in Low Reynolds Numbers in the Langley Low-Turbulence Pressure Tunnel,” NASA TM 4062.
15.
McGhee, R. J., and Walker, B. S., 1989, “Performance Measurements of an Airfoil at Low Reynolds Numbers,” Low Reynolds Number Aerodynamics, T. J. Mueller, ed., Lecture Notes in Engineering, 54, Springer-Verlag, pp. 131–145.
16.
Zaman
,
K. B. M. Q.
,
1989
, “
A Natural Low-Frequency Oscillation of the Flow Over an Airfoil near Stalling Conditions
,”
J. Fluid Mech.
,
202
, pp.
403
442
.
17.
Mabey
,
D. G.
,
1992
, “
Review of the Normal Force Fluctuations on Aerofoils With Separated Flow
,”
Prog. Aerosp. Sci.
,
29
(
1
), pp.
43
80
.
18.
Bragg
,
M. B.
,
Heinrich
,
D. C.
,
Balow
,
F. A.
, and
Zaman
,
K. B. M. Q.
,
1996
, “
Flow Oscillation over an Airfoil near Stall
,”
AIAA J.
,
34
(
1
), pp.
199
201
.
19.
Broeren
,
A. P.
, and
Bragg
,
M. B.
,
1999
, “
Flowfield Measurements over an Airfoil during Natural Low-Frequency Oscillations Near Stall
,”
AIAA J.
,
37
(
1
), pp.
130
132
.
20.
Ha¨ggmark
,
C. P.
,
Hildings
,
C.
, and
Henningson
,
D. S.
,
2001
, “
A Numerical and Experimental Study of a Transitional Separation Bubble
,”
Aerosp. Sci. Technol.
,
5
, pp.
317
328
.
21.
Bak
,
C.
,
Madsen
,
H. A.
,
Fuglsang
,
P.
, and
Rasmussen
,
F.
,
1999
, “
Observations and Hypothesis of Double Stall
,”
Wind Energy
,
2
(
4
), pp.
195
210
.
22.
Alam
,
M.
, and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
410
, pp.
1
28
.
23.
Spalart
,
P. R.
, and
Strelets
,
M. Kh.
,
2000
, “
Mechanisms of Transition and Heat Transfer in a Separation Bubble
,”
J. Fluid Mech.
,
403
, pp.
329
349
.
24.
Buning, P. G., Jespersen, D. C., Pulliam, T. H., Chan, W. M., Slotnick, J. P., Krist, S. E., and Renze, K. J., 1998, OVERFLOW User’s Manual, Version 1.8, NASA Langley Research Center.
25.
Baldwin, B. S., and Barth, T. J., 1990, “A One-Equation Turbulence Transport Model for High Reynolds Number Wall-Bounded Flows,” NASA TM 102847.
26.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Recherche Ae´rospatiale
, No.
1
, pp.
5
21
.
27.
Somers, D. M., 1997, “Design and Experimental Results for the S809 Airfoil,” NREL SR-440-6918.
28.
Drela, M., 1990, “Newton Solution of Coupled Viscous/Inviscid Multielement Airfoil Flows,” AIAA Paper No. 90–1470.
29.
Brodeur
,
R.
, and
van Dam
,
C. P.
,
2001
, “
Transition Prediction for a Two Dimensional Reynolds-Averaged Navier-Stokes Method Applied to Wind-Turbine Airfoils
,”
Wind Energy
,
4
(
2
), pp.
61
75
.
30.
Gleyzes, C., Cousteix, J., and Bonnet, J. L., 1984, “A Calculation Method of Leading-Edge Separation Bubbles,” Numerical and Physical Aspects of Aerodynamic Flows II, T. Cebeci, ed., Springer-Verlag, pp. 173–192.
31.
Wortmann, F. X., 1961, “Progress in the Design of Low Drag Aerofoils,” Boundary Layer and Flow Control, G. V. Lachmann, ed., Pergamon, pp. 748–770.
You do not currently have access to this content.