This paper presents a time series analysis of historical observations of wind speed in order to project future wind speed trends. For this study, 52 years of data have been used from seven suitable stations across the UK. Four parsimonious models have been employed, and the data were split into two different segments: the training and the validation data sets. During the fitting process, the optimum parameters for each model were determined in order to minimize the mean square error in the predictions. The results suggest that the seasonal pattern in wind speeds is the most important factor but that there is some monthly autocorrelation in the data, which can improve forecasts. This is confirmed by testing the four models with the model having considered both autocorrelation and seasonality achieving the smallest errors. The approach proposed for forecasting wind speeds a month ahead may be deemed useful to suppliers for purchasing base load in advance and to system operators for power system maintenance scheduling up to a month ahead.

1.
Bathurst
,
G. N.
,
Weatherill
,
J.
, and
Strbac
,
G.
, 2002, “
Trading Wind Generation in Short Term Energy Markets
,”
IEEE Trans. Power Syst.
0885-8950,
17
(
3
), pp.
782
789
.
2.
Marti
,
I.
,
Kariniotakis
,
G.
,
Pinson
,
P.
,
Sanchez
,
I.
,
Nielsen
,
T. S.
,
Madsen
,
H.
,
Giebel
,
G.
,
Usaola
,
J.
,
Palomares
,
A. M.
,
Brownsword
,
R.
,
Tambke
,
J.
,
Focken
,
U.
,
Lange
,
M.
,
Sideratos
,
G.
, and
Descombes
,
G.
, 2006, “
Evaluation of Advanced Wind Power Forecasting Models—Results of the Anemos Project
,”
Proceedings of the European Wind Energy Conference and Exhibition (EWEC)
.
3.
Costa
,
A.
,
Crespo
,
A.
,
Navarro
,
J.
,
Lizcano
,
G.
,
Madsen
,
H.
, and
Feitosa
,
E.
, 2008, “
A Review on the Young History of the Wind Power Short-Term Prediction
,”
Renewable Sustainable Energy Rev.
1364-0321,
12
(
6
), pp.
1725
1744
.
4.
Giebel
,
G.
,
Landberg
,
L.
,
Kariniotakis
,
G.
, and
Brownsword
,
R.
, 2003, “
State-of-the-Art on Methods and Software Tools for Short-Term Prediction of Wind Energy Production
,”
Proceedings of the European Wind Energy Conference and Exhibition (EWEC)
.
5.
Landberg
,
L.
,
Giebel
,
G.
,
Nielsen
,
H. A.
,
Nielsen
,
T. S.
, and
Madsen
,
H.
, 2003, “
Short-Term Prediction—An Overview
,”
Wind Energy
1095-4244,
6
(
3
), pp.
273
280
.
6.
Kritharas
,
P. P.
, and
Watson
,
S. J.
, 2009, “
Long Term Forecasting of Wind Speed Using Historical Patterns
,”
Proceedings of the European Wind Energy Conference and Exhibition (EWEC)
.
7.
Weisser
,
D.
, and
Foxon
,
T. J.
, 2003, “
Implications of Seasonal and Diurnal Variations of Wind Velocity for Power Output Estimation of a Turbine: A Case Study of Grenada
,”
Int. J. Energy Res.
0363-907X,
27
(
13
), pp.
1165
1179
.
8.
Thomas
,
P.
,
Cox
,
S.
, and
Tindal
,
A.
, 2009, “
Long-Term Wind Speed Trends in North-Western Europe
,”
Proceedings of the European Wind Energy Conference and Exhibition (EWEC)
.
9.
Harman
,
K.
, and
Morgan
,
C.
, 2005, “
Use of Regional Wind Energy Indices to Predict Long-Term Wind Farm Production and to Assess Portfolio Effect
,”
Proceedings of the World Renewable Energy Congress (WREC)
.
10.
García-Bustamante
,
E.
,
González-Rouco
,
J. F.
,
Jiménez
,
P. A.
,
Navarro
,
J.
, and
Montávez
,
J. P.
, 2009, “
A Comparison of Methodologies for Monthly Wind Energy Estimation
,”
Wind Energy
1095-4244,
12
(
7
), pp.
640
659
.
11.
Cadenas
,
E.
, and
Rivera
,
W.
, 2007, “
Wind Speed Forecasting in the South Coast of Oaxaca, Mexico
,”
Renewable Energy
0960-1481,
32
(
12
), pp.
2116
2128
.
12.
Kennedy
,
S.
, and
Rogers
,
P.
, 2003, “
A Probabilistic Model for Simulating Long-Term Wind-Power Output
,”
Wind Eng.
0309-524X,
27
(
3
), pp.
167
181
.
13.
More
,
A.
, and
Deo
,
M. C.
, 2003, “
Forecasting Wind With Neural Networks
,”
Mar. Struct.
0951-8339,
16
(
1
), pp.
35
49
.
14.
Mohandes
,
M. A.
,
Rehman
,
S.
, and
Halawani
,
T. O.
, 1998, “
A Neural Networks Approach for Wind Speed Prediction
,”
Renewable Energy
0960-1481,
13
(
3
), pp.
345
354
.
15.
Kalogirou
,
S.
,
Neocleous
,
C.
,
Paschiardis
,
S.
, and
Schizas
,
C.
, 1999, “
Wind Speed Prediction Using Artificial Neural Networks
,”
Proceedings of the European Symposium on Intelligent Techniques ESIT’99
.
16.
Fadare
,
D. A.
, 2010, “
The Application of Artificial Neural Networks to Mapping of Wind Speed Profile for Energy Application in Nigeria
,”
Appl. Energy
0306-2619,
87
(
3
), pp.
934
942
.
17.
UK Met Office
, 2009, “
Midas Land Surface Stations Data (1853-Current)
,” http://badc.nerc.ac.uk/data/ukmo-midashttp://badc.nerc.ac.uk/data/ukmo-midas
18.
Vanderhoven
,
I.
, 1957, “
Power Spectrum of Horizontal Wind Speed in the Frequency Range From 0.0007 to 900 Cycles Per Hour
,”
J. Meteorol.
0095-9634,
14
(
2
), pp.
160
164
.
19.
Ljung
,
G. M.
, and
Box
,
G. E. P.
, 1978, “
Measure of Lack of Fit in Time-Series Models
,”
Biometrika
0006-3444,
65
(
2
), pp.
297
303
.
20.
Makridakis
,
S.
,
Wheelwright
,
S. C.
, and
Hyndman
,
R. J.
, 1998,
Forecasting: Methods and Applications
,
Wiley
,
New York
.
You do not currently have access to this content.