The design and characterization of an upward flow reactor (UFR) coupled to a high flux solar simulator (HFSS) under vacuum is presented. The UFR was designed to rapidly heat solid samples with concentrated irradiation to temperatures greater than 1000 °C at heating rates in excess of 50 K/s. Such conditions are ideal for examining high-temperature thermal reduction kinetics of reduction/oxidation-active materials by temporally monitoring O2 evolution. A steady-state, computational fluid dynamics (CFD) model was employed in the design to minimize the formation of eddies and recirculation, and lag and dispersion were characterized through a suite of O2 tracer experiments using deconvolution and the continuously stirred tank reactors (CSTR) in series models. A transient, CFD and heat transfer model of the UFR was combined with Monte Carlo ray tracing (MCRT) to determine radiative heat fluxes on the sample from the HFSS to model spatial and temporal sample temperatures. The modeled temperatures were compared with those measured within the sample during an experiment in which Co3O4 was thermally reduced to CoO and O2. The measured temperatures within the bed were bounded by the average top and bottom modeled bed temperatures for the duration of the experiment. Small variances in the shape of the modeled versus experimental temperatures were due to contact resistance between the thermocouple and particles in the bed and changes in the spectral absorptivity and emissivity as the Co3O4 was reduced to CoO and O2.

References

1.
Parida
,
B.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2011
, “
A Review of Solar Photovoltaic Technologies
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1625
1636
.
2.
Zhang
,
H. L.
,
Baeyens
,
J.
,
Degrève
,
J.
, and
Cacères
,
G.
,
2013
, “
Concentrated Solar Power Plants: Review and Design Methodology
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
466
481
.
3.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
.
4.
Steinfeld
,
A.
,
2005
, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
,
78
(
5
), pp.
603
615
.
5.
Loutzenhiser
,
P. G.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2010
, “
Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Materials
,
3
(
11
), pp.
4922
4938
.
6.
Miller
,
J. E.
,
Ambrosini
,
A.
,
Coker
,
E. N.
,
Allendorf
,
M. D.
, and
McDaniel
,
A. H.
,
2014
, “
Advancing Oxide Materials for Thermochemical Production of Solar Fuels
,”
Energy Procedia
,
49
, pp.
2019
2026
.
7.
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2015
, “
A Review on Solar Thermal Syngas Production Via Redox Pair-Based Water/Carbon Dioxide Splitting Thermochemical Cycles
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
254
285
.
8.
Dry
,
M. E.
,
2002
, “
The Fischer–Tropsch Process: 1950–2000
,”
Catal. Today
,
71
(
3–4
), pp.
227
241
.
9.
Schrader
,
A. J.
,
Muroyama
,
A. P.
, and
Loutzenhiser
,
P. G.
,
2015
, “
Solar Electricity Via an Air Brayton Cycle With an Integrated Two-Step Thermochemical Cycle for Heat Storage Based on Co3O4/CoO Redox Reactions: Thermodynamic Analysis
,”
Sol. Energy
,
118
, pp.
485
495
.
10.
Carrillo
,
A. J.
,
Serrano
,
D. P.
,
Pizarro
,
P.
, and
Coronado
,
J. M.
,
2014
, “
Thermochemical Heat Storage Based on the Mn2O3/Mn3O4 Redox Couple: Influence of the Initial Particle Size on the Morphological Evolution and Cyclability
,”
J. Mater. Chem. A
,
2
(
45
), pp.
19435
19443
.
11.
Pagkoura
,
C.
,
Karagiannakis
,
G.
,
Zygogianni
,
A.
,
Lorentzou
,
S.
,
Kostoglou
,
M.
,
Konstandopoulos
,
A. G.
,
Rattenburry
,
M.
, and
Woodhead
,
J. W.
,
2014
, “
Cobalt Oxide Based Structured Bodies as Redox Thermochemical Heat Storage Medium for Future CSP Plants
,”
Sol. Energy
,
108
, pp.
146
163
.
12.
Marxer
,
D.
,
Furler
,
P.
,
Scheffe
,
J.
,
Geerlings
,
H.
,
Falter
,
C.
,
Batteiger
,
V.
,
Sizmann
,
A.
, and
Steinfeld
,
A.
,
2015
, “
Demonstration of the Entire Production Chain to Renewable Kerosene Via Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
29
(
5
), pp.
3241
3250
.
13.
Neises
,
M.
,
Tescari
,
S.
,
de Oliveira
,
L.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Wong
,
B.
,
2012
, “
Solar-Heated Rotary Kiln for Thermochemical Energy Storage
,”
Sol. Energy
,
86
(
10
), pp.
3040
3048
.
14.
Loutzenhiser
,
P. G.
,
Gálvez
,
M. E.
,
Hischier
,
I.
,
Stamatiou
,
A.
,
Frei
,
A.
, and
Steinfeld
,
A.
,
2009
, “
CO2 Splitting Via Two-Step Solar Thermochemical Cycles With Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic Analysis
,”
Energy Fuels
,
23
(
5
), pp.
2832
2839
.
15.
Wong
,
B.
,
2011
, “
Thermochemical Heat Storage for Concentrated Solar Power
,” U.S. Department of Energy, San Diego, CA, Report No.
DOE/GO18145
.https://www.osti.gov/scitech/servlets/purl/1039304/
16.
Muroyama
,
A. P.
,
Schrader
,
A. J.
, and
Loutzenhiser
,
P. G.
,
2015
, “
Solar Electricity Via an Air Brayton Cycle With an Integrated Two-Step Thermochemical Cycle for Heat Storage Based on Co3O4/CoO Redox Reactions II: Kinetic Analyses
,”
Sol. Energy
,
122
, pp.
409
418
.
17.
Abu Hamed
,
T.
,
Venstrom
,
L.
,
Alshare
,
A.
,
Brulhart
,
M.
, and
Davidson
,
J. H.
,
2009
, “
Study of a Quench Device for the Synthesis and Hydrolysis of Zn Nanoparticles: Modeling and Experiments
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031018
.
18.
McDaniel
,
A. H.
,
Ambrosini
,
A.
,
Coker
,
E. N.
,
Miller
,
J. E.
,
Chueh
,
W. C.
,
O'Hayre
,
R.
, and
Tong
,
J.
,
2014
, “
Nonstoichiometric Perovskite Oxides for Solar Thermochemical H2 and CO Production
,”
Energy Procedia
,
49
, pp.
2009
2018
.
19.
Mizusaki
,
J.
,
1992
, “
Nonstoichiometry, Diffusion, and Electrical Properties of Perovskite-Type Oxide Electrode Materials
,”
Solid State Ionics
,
52
(
1
), pp.
79
91
.
20.
Schunk
,
L. O.
, and
Steinfeld
,
A.
,
2009
, “
Kinetics of the Thermal Dissociation of ZnO Exposed to Concentrated Solar Irradiation Using a Solar-Driven Thermogravimeter in the 1800–2100 K Range
,”
AIChE J.
,
55
(
6
), pp.
1497
1504
.
21.
Alonso
,
E.
,
Hutter
,
C.
,
Romero
,
M.
,
Steinfeld
,
A.
, and
Gonzalez-Aguilar
,
J.
,
2013
, “
Kinetics of Mn2O3–Mn3O4 and Mn3O4–MnO Redox Reactions Performed Under Concentrated Thermal Radiative Flux
,”
Energy Fuels
,
27
(
8
), pp.
4884
4890
.
22.
Takacs
,
M.
,
Ackermann
,
S.
,
Bonk
,
A.
,
Neises-von Puttkamer
,
M.
,
Haueter
,
P.
,
Scheffe
,
J. R.
,
Vogt
,
U. F.
, and
Steinfeld
,
A.
,
2017
, “
Splitting CO2 With a Ceria-Based Redox Cycle in a Solar-Driven Thermogravimetric Analyzer
,”
AIChE J.
,
63
(
4
), pp.
1263
1271
.
23.
Scheffe
,
J. R.
,
McDaniel
,
A. H.
,
Allendorf
,
M. D.
, and
Weimer
,
A. W.
,
2013
, “
Kinetics and Mechanism of Solar-Thermochemical H2 Production by Oxidation of a Cobalt Ferrite-Zirconia Composite
,”
Energy Environ. Sci.
,
6
(
3
), pp.
963
973
.
24.
Alonso
,
E.
, and
Romero
,
M.
,
2015
, “
A Directly Irradiated Solar Reactor for Kinetic Analysis of Non-Volatile Metal Oxides Reductions
,”
Int. J. Energy Res.
,
39
(
9
), pp.
1217
1228
.
25.
ANSYS
,
2013
, “
ANSYS Fluent
,” ANSYS, Inc., Canonsburg, PA.
26.
NETZSCH
, 2012, “
Operating Instructions: Simultaneous TG-DTA/DSC Apparatus, STA 449 F3 Jupiter
,” NETZSCH-Gerätebau GmbH, Selb, Germany, p.
3.30
.
27.
McMaster-Carr,
2015
, “
Extreme-Chemical O-Ring FEP With Viton® Core
,” McMaster-Carr, Elmhurst, IL.
28.
Gill
,
R.
,
Bush
,
E.
,
Haueter
,
P.
, and
Loutzenhiser
,
P.
,
2015
, “
Characterization of a 6 kW High-Flux Solar Simulator With an Array of Xenon Arc Lamps Capable of Concentrations of Nearly 5000 Suns
,”
Rev. Sci. Instrum.
,
86
(
12
), p.
125107
.
29.
Andraka
,
C. E.
,
Sadlon
,
S.
,
Myer
,
B.
,
Trapeznikov
,
K.
, and
Liebner
,
C.
,
2013
, “
Rapid Reflective Facet Characterization Using Fringe Reflection Techniques
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011002
.
30.
Smith
,
D.
,
Shiles
,
E.
, and
Inokuti
,
M.
,
1985
, “
The Optical Properties of Metallic Aluminum
,”
Handbook of Optical Constants of Solids
, Vol.
1
, Academic Press, Cambridge, MA, pp.
369
406
.
31.
TGP
,
2010
, “
Fused Quartz Average Transmittance Curves
,” Technical Glass Products, Lake County, OH, accessed Mar. 9, 2017, https://www.technicalglass.com/fused_quartz_transmission.html
32.
NIST,
2016
, “
Tricobalt Tetraoxide
,”
NIST Chemistry WebBook
,
P. J.
Linstrom
and
W. G.
Mallard
, eds., National Institute of Standards and Technology, Gaithersburg, MD.
33.
Tsotsas
,
E.
, and
Martin
,
H.
,
1987
, “
Thermal Conductivity of Packed Beds: A Review
,”
Chem. Eng. Process.
,
22
(
1
), pp.
19
37
.
34.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Academic Press
,
Oxford, UK
.
35.
Kim
,
S. J.
, and
Jang
,
S. P.
,
2002
, “
Effects of the Darcy Number, the Prandtl Number, and the Reynolds Number on Local Thermal Non-Equilibrium
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3885
3896
.
36.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Redox Cycles
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031004
.
37.
Singh
,
B. P.
, and
Kaviany
,
M.
,
1992
, “
Modelling Radiative Heat Transfer in Packed Beds
,”
Int. J. Heat Mass Transfer
,
35
(
6
), pp.
1397
1405
.
38.
Zehner
,
P.
, and
Schlünder
,
E. U.
,
1972
, “
Einfluß der Wärmestrahlung und des Druckes auf den Wärmetransport in nicht durchströmten Schüttungen
,”
Chem. Ing. Tech.
,
44
(
23
), pp.
1303
1308
.
39.
Sahoo
,
P.
,
Djieutedjeu
,
H.
, and
Poudeu
,
P. F. P.
,
2013
, “
Co3O4 Nanostructures: The Effect of Synthesis Conditions on Particles Size, Magnetism and Transport Properties
,”
J. Mater. Chem. A
,
1
(
47
), pp.
15022
15030
.
40.
Lewis
,
F. B.
, and
Saunders
,
N. H.
,
1973
, “
The Thermal Conductivity of NiO and CoO at the Neel Temperature
,”
J. Phys. C
,
6
(
15
), p.
2525
.
41.
Ghiaasiaan
,
S. M.
,
2011
,
Convective Heat and Mass Transfer
,
Cambridge University Press
,
New York
.
42.
LeFevre
,
E. J.
,
1956
, “
Laminar Free Convection From a Vertical Plane Surface
,”
The Ninth International Congress on Applied Mechanics
, Brussels, Belgium, Sept. 5–13, pp.
175
183
.
43.
Cook
,
J. G.
, and
van der Meer
,
M. P.
,
1986
, “
The Optical Properties of Sputtered Co3O4 Films
,”
Thin Solid Films
,
144
(
2
), pp.
165
176
.
44.
Sumin Sih
,
S.
, and
Barlow
,
J. W.
,
2004
, “
The Prediction of the Emissivity and Thermal Conductivity of Powder Beds
,”
Part. Sci. Technol.
,
22
(
3
), pp.
291
304
.
45.
Levenspiel
,
O.
,
1999
,
Chemical Reaction Engineering
,
Wiley
,
Hoboken, NJ
.
46.
MathWorks
,
2016
, “
FFT: Fast Fourier Transform
,”
MathWorks
,
Natick, MA
.
You do not currently have access to this content.