Abstract

Herein, the synthesis of the novel and inexpensive phosphate mixtures, Fe3(PO4)2·0.5 Na3PO4.6 H2O· NaOH (calcined) and Fe3(PO4)2·0.5 Na3PO4·4 H2O· NaOH (non-calcined) of iron (Fe) and sodium (Na) and their application as reflective coating with building envelope materials is reported. The main objective of this work is to determine the effect of hydrated mixtures as a reflective coating. To obtain different hydrated mixtures, samples were synthesized in both calcined and non-calcined manner. Various measurement techniques were used to characterize and study the thermal behavior of mixtures. From the thermal behavior of the mixtures, it is noticed that the mixtures can be used as heat-dissipating materials. The average crystallite size was found to be 40.18 nm and 25.48 nm for the calcined and the non-calcined mixtures, respectively. The calculated band gap for the calcined mixture is 3.71 eV and the non-calcined mixture is 3.73 eV. According to Reddy's equation, the refractive index of the calcined and the non-calcined mixtures is 2.61 and 2.60, respectively. Both the calcined (1A) and the non-calcined (1B) mixtures were fabricated with commercial white paint to develop aesthetic light gray coatings. Both coatings were painted and tested on two building material slabs separately. Then, the highest reflective coating material between these two was painted on a house prototype and tested against commercial gray paint available in the market. An average temperature reduction of 3.8 K was observed in modified gray coating compared to commercial building paint. The reflective coating of the calcined mixture blended with white paint was observed to be better than the non-calcined mixture blended with white paint.

References

1.
Huber
,
M.
, and
Knutti
,
R.
,
2012
, “
Anthropogenic and Natural Warming Inferred From Changes in Earth’s Energy Balance
,”
Nat. Geosci.
,
5
(
1
), pp.
31
36
.
2.
Uemoto
,
K. L.
,
Sato
,
N. M.
, and
John
,
V. M.
,
2010
, “
Estimating Thermal Performance of Cool Colored Paints
,”
Energy Build.
,
42
(
1
), pp.
17
22
.
3.
Bastide
,
A.
,
Lauret
,
P.
,
Garde
,
F.
, and
Boyer
,
H.
,
2006
, “
Building Energy Efficiency and Thermal Comfort in Tropical Climates: Presentation of a Numerical Approach for Predicting the Percentage of Well-Ventilated Living Spaces in Buildings Using Natural Ventilation
,”
Energy Build.
,
38
(
9
), pp.
1093
1103
.
4.
Ruparathna
,
R.
,
Hewage
,
K.
, and
Sadiq
,
R.
,
2016
, “
Improving the Energy Efficiency of the Existing Building Stock: A Critical Review of Commercial and Institutional Buildings
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1032
1045
.
5.
Mirrahimi
,
S.
,
Mohamed
,
M. F.
,
Haw
,
L. C.
,
Ibrahim
,
N. L. N.
,
Yusoff
,
W. F. M.
, and
Aflaki
,
A.
,
2016
, “
The Effect of Building Envelope on the Thermal Comfort and Energy Saving for High-Rise Buildings in Hot–Humid Climate
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1508
1519
.
6.
Rashmi
,
S.
, and
Mishra
,
S.
,
2020
, “
Thermal Performance of Building Envelope
,”
Int. J. Eng. Res. Technol.
,
9
(
7
), pp.
1633
1637
.
7.
Synnefa
,
A.
,
Santamouris
,
M.
, and
Akbari
,
H.
,
2007
, “
Estimating the Effect of Using Cool Coatings on Energy Loads and Thermal Comfort in Residential Buildings in Various Climatic Conditions
,”
Energy Build.
,
39
(
11
), pp.
1167
1174
.
8.
Santamouris
,
M.
,
2014
, “
Cooling the Cities—A Review of Reflective and Green Roof Mitigation Technologies to Fight Heat Island and Improve Comfort in Urban Environments
,”
Sol. Energy
,
103
, pp.
682
703
.
9.
Muhieldeen
,
M. W.
,
Adam
,
N. M.
, and
Salman
,
B. H.
,
2015
, “
Experimental and Numerical Studies of Reducing Cooling Load of Lecture Hall
,”
Energy Build.
,
89
, pp.
163
169
.
10.
Cabeza
,
L. F.
,
Castell
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Pérez
,
G.
, and
Fernández
,
I.
,
2010
, “
Experimental Study on the Performance of Insulation Materials in Mediterranean Construction
,”
Energy Build.
,
42
(
5
), pp.
630
636
.
11.
Aktacir
,
M. A.
,
Büyükalaca
,
O.
, and
Yılmaz
,
T.
,
2010
, “
A Case Study for Influence of Building Thermal Insulation on Cooling Load and Air-Conditioning System in the Hot and Humid Regions
,”
Appl. Energy
,
87
(
2
), pp.
599
607
.
12.
Guillén
,
I.
,
Gómez-Lozano
,
V.
,
Fran
,
J. M.
, and
López-Jiménez
,
P. A.
,
2014
, “
Thermal Behavior Analysis of Different Multilayer Façade: Numerical Model Versus Experimental Prototype
,”
Energy Build.
,
79
, pp.
184
190
.
13.
Kolaitis
,
D. I.
,
Malliotakis
,
E.
,
Kontogeorgos
,
D. A.
,
Mandilaras
,
I.
,
Katsourinis
,
D. I.
, and
Founti
,
M. A.
,
2013
, “
Comparative Assessment of Internal and External Thermal Insulation Systems for Energy-Efficient Retrofitting of Residential Buildings
,”
Energy Build.
,
64
, pp.
123
131
.
14.
Marinosci
,
C.
,
Strachan
,
P. A.
,
Semprini
,
G.
, and
Morini
,
G. L.
,
2011
, “
Empirical Validation and Modelling of a Naturally Ventilated Rainscreen Façade Building
,”
Energy Build.
,
43
(
4
), pp.
853
863
.
15.
Zakirullin
,
R. S.
,
2020
, “
A Smart Window for Angular Selective Filtering of Direct Solar Radiation
,”
ASME J. Sol. Energy Eng.
,
142
(
1
), p.
011001
.
16.
Naraghi
,
M. H.
, and
Harant
,
A.
,
2013
, “
Configuration of Building Façade Surface for Seasonal Selectiveness of Solar Irradiation—Absorption and Reflection
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011004
.
17.
Biswas
,
K.
,
Rose
,
J.
,
Eikevik
,
L.
,
Guerguis
,
M.
,
Enquist
,
P.
,
Lee
,
B.
,
Love
,
L.
,
Green
,
J.
, and
Jackson
,
R.
,
2017
, “
Additive Manufacturing Integrated Energy—Enabling Innovative Solutions for Buildings of the Future
,”
ASME J. Sol. Energy Eng.
,
139
(
1
), p.
015001
.
18.
Castellón
,
C.
,
Castell
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
, and
Cabeza
,
L. F.
,
2009
, “
Experimental Study of PCM Inclusion in Different Building Envelopes
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041006
.
19.
Castell
,
A.
,
Martorell
,
I.
,
Medrano
,
M.
,
Pérez
,
G.
, and
Cabeza
,
L. F.
,
2010
, “
Experimental Study of Using PCM in Brick Constructive Solutions for Passive Cooling
,”
Energy Build.
,
42
(
4
), pp.
534
540
.
20.
Han
,
B.
,
Zhang
,
K.
, and
Yu
,
X.
,
2013
, “
Enhance the Thermal Storage of Cement-Based Composites With Phase Change Materials and Carbon Nanotubes
,”
ASME J. Sol. Energy Eng.
,
135
(
2
), p.
024505
.
21.
Sleiti
,
A. K.
, and
Naimaster
,
E. J.
, IV
,
2016
, “
Application of Fatty Acid-Based Phase-Change Material to Reduce Energy Consumption From Roofs of Buildings
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051003
.
22.
Mourid
,
A.
, and
El Alami
,
M.
,
2017
, “
Thermal Behaviour of a Building Provided With Phase-Change Materials on the Roof and Exposed to Solar Radiation
,”
ASME J. Sol. Energy Eng.
,
139
(
6
), p.
061012
.
23.
Saxena
,
R.
,
Biplab
,
K.
, and
Rakshit
,
D.
,
2018
, “
Quantitative Assessment of Phase Change Material Utilization for Building Cooling Load Abatement in Composite Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011001
.
24.
Gounni
,
A.
,
El Alami
,
M.
,
Mabouk
,
M. T.
, and
Kheiri
,
A.
,
2018
, “
Experimental Study of Thermal Performance of a Reduced Scale Cavity Equipped with Phase Change Material: Study of the Optimal Phase Change Material Layer Location
,”
ASME J. Sol. Energy Eng.
,
140
(
4
), p.
041001
.
25.
Young
,
B. A.
,
Falzone
,
G.
,
Wei
,
Z.
,
Sant
,
G.
, and
Pilon
,
L.
,
2018
, “
Reduced-Scale Experiments to Evaluate Performance of Composite Building Envelopes Containing Phase Change Materials
,”
Constr. Build. Mater.
,
162
, pp.
584
595
.
26.
Pisello
,
A. L.
,
Goretti
,
M.
, and
Cotana
,
F.
,
2012
, “
A Method for Assessing Buildings’ Energy Efficiency by Dynamic Simulation and Experimental Activity
,”
Appl. Energy
,
97
, pp.
419
429
.
27.
Jo
,
J. H.
,
Carlson
,
J. D.
,
Golden
,
J. S.
, and
Bryan
,
H.
,
2010
, “
An Integrated Empirical and Modeling Methodology for Analyzing Solar Reflective Roof Technologies on Commercial Buildings
,”
Build. Environ.
,
45
(
2
), pp.
453
460
.
28.
Wang
,
X.
,
Kendrick
,
C.
,
Ogden
,
R.
, and
Maxted
,
J.
,
2008
, “
Dynamic Thermal Simulation of a Retail Shed With Solar Reflective Coatings
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1066
1073
.
29.
Levinson
,
R.
,
Akbari
,
H.
, and
Reilly
,
J. C.
,
2007
, “
Cooler Tile-Roofed Buildings With Near-Infrared-Reflective Non-White Coatings
,”
Build. Environ.
,
42
(
7
), pp.
2591
2605
.
30.
Liu
,
L.
,
Han
,
A.
,
Ye
,
M.
, and
Feng
,
W.
,
2015
, “
The Evaluation of Thermal Performance of Cool Coatings Colored With High Near-Infrared Reflective Nano-brown Inorganic Pigments: Magnesium Doped ZnFe2O4 Compounds
,”
Sol. Energy
,
113
, pp.
48
56
.
31.
Zubielewicz
,
M.
,
Kamińska-Tarnawska
,
E.
,
Ślusarczyk
,
A.
, and
Langer
,
E.
,
2011
, “
Prediction of Heat Build-up of Solar Reflecting Coatings Based on Physico-chemical Properties of Complex Inorganic Color Pigments (CICPs) “
,”
Prog. Org. Coat.
,
72
(
1–2
), pp.
65
72
.
32.
Liu
,
L.
,
Han
,
A.
,
Ye
,
M.
, and
Zhao
,
M.
,
2015
, “
Synthesis and Characterization of Al3 + Doped LaFeO3 Compounds: A Novel Inorganic Pigments With High Near-Infrared Reflectance
,”
Sol. Energy Mater. Sol. Cells
,
132
, pp.
377
384
.
33.
Sameera
,
S.
,
Rao
,
P. P.
,
Divya
,
S.
, and
Raj
,
A. K.
,
2015
, “
Brilliant IR Reflecting Yellow Colorants in Rare Earth Double Molybdate Substituted BiVO4 Solid Solutions for Energy Saving Applications
,”
ACS Sustainable Chem. Eng.
,
3
(
6
), pp.
1227
1233
.
34.
Baneshi
,
M.
,
Maruyama
,
S.
, and
Komiya
,
A.
,
2009
, “
The Effects of Using Some Common White Pigments on Thermal and Aesthetic Performances of Pigmented Coatings
,”
J. Therm. Sci. Technol.
,
4
(
1
), pp.
131
145
.
35.
Baneshi
,
M.
,
Maruyama
,
S.
, and
Komiya
,
A.
,
2012
, “
The Effects of TiO2 Pigmented Coatings Characteristics on Temperature and Brightness of a Coated Black Substrate
,”
Sol. Energy
,
86
(
1
), pp.
200
207
.
36.
Kiomarsipour
,
N.
,
Razavi
,
R. S.
,
Ghani
,
K.
, and
Kioumarsipour
,
M.
,
2013
, “
Evaluation of Shape and Size Effects on Optical Properties of ZnO Pigment
,”
Appl. Surf. Sci.
,
270
, pp.
33
38
.
37.
Tian
,
M.
,
Han
,
A.
,
Ma
,
S.
,
Zhu
,
X.
,
Ye
,
M.
, and
Chen
,
X.
,
2021
, “
Preparation of Cr-Doped BaTiO3 Near Infrared Reflection Pigment Powder and its Anti-aging Performance for Acrylonitrile-Styrene-Acrylate
,”
Powder Technol.
,
378
, pp.
182
190
.
38.
Tian
,
M.
,
Yao
,
L.
,
Han
,
A.
,
Zhu
,
X.
,
Chen
,
C.
,
Ye
,
M.
, and
Chen
,
X.
,
2020
, “
Near-Infrared Reflectance and Thermal Insulating Performance of Mo-Doped Bi2WO6 With 3D Hierarchical Flower-Like Structure as Novel Ceramics Pigment
,”
Ceram. Int.
,
46
(
8
), pp.
12566
12573
.
39.
de Oliveira Primo
,
J.
,
Borth
,
K. W.
,
Peron
,
D. C.
,
de Carvalho Teixeira
,
V.
,
Galante
,
D.
,
Bittencourt
,
C.
, and
Anaissi
,
F. J.
,
2019
, “
Synthesis of Green Cool Pigments (CoxZn1-xO) for Application in NIR Radiation Reflectance
,”
J. Alloys Compd.
,
780
, pp.
17
24
.
40.
Levinson
,
R.
,
Berdahl
,
P.
, and
Akbari
,
H.
,
2005
, “
Solar Spectral Optical Properties of Pigments—Part II: Survey of Common Colorants
,”
Sol. Energy Mater. Sol. Cells
,
89
(
4
), pp.
351
389
.
41.
Gao
,
Q.
,
Wu
,
X.
, and
Fan
,
Y.
,
2014
, “
Solar Spectral Optical Properties of Rutile TiO2 Coated Mica–Titania Pigments
,”
Dyes Pigm.
,
109
, pp.
90
95
.
42.
Synnefa
,
A.
,
Santamouris
,
M.
, and
Apostolakis
,
K.
,
2007
, “
On the Development, Optical Properties and Thermal Performance of Cool Colored Coatings for the Urban Environment
,”
Sol. Energy
,
81
(
4
), pp.
488
497
.
43.
Levinson
,
R.
,
Berdahl
,
P.
,
Akbari
,
H.
,
Miller
,
W.
,
Joedicke
,
I.
,
Reilly
,
J.
,
Suzuki
,
Y.
, and
Vondran
,
M.
,
2007
, “
Methods of Creating Solar-Reflective Nonwhite Surfaces and Their Application to Residential Roofing Materials
,”
Sol. Energy Mater. Sol. Cells
,
91
(
4
), pp.
304
314
.
44.
Santamouris
,
M.
,
Synnefa
,
A.
, and
Karlessi
,
T.
,
2011
, “
Using Advanced Cool Materials in the Urban Built Environment to Mitigate Heat Islands and Improve Thermal Comfort Conditions
,”
Sol. Energy
,
85
(
12
), pp.
3085
3102
.
45.
Xue
,
X.
,
Qin
,
J.
,
Song
,
J.
,
Qu
,
J.
,
Shi
,
Y.
,
Zhang
,
W.
,
Song
,
Z.
,
Jiang
,
L.
,
Li
,
J.
,
Guo
,
H.
, and
Zhang
,
T.
,
2014
, “
The Methods for Creating Energy Efficient Cool Gray Building Coatings—Part I: Preparation From White and Black Pigments
,”
Sol. Energy Mater. Sol. Cells
,
130
, pp.
587
598
.
46.
Thongkanluang
,
T.
,
Chirakanphaisarn
,
N.
, and
Limsuwan
,
P.
,
2012
, “
Preparation of NIR Reflective Brown Pigment
,”
Procedia Eng.
,
32
, pp.
895
901
.
47.
Shen
,
H.
,
Tan
,
H.
, and
Tzempelikos
,
A.
,
2011
, “
The Effect of Reflective Coatings on Building Surface Temperatures, Indoor Environment, and Energy Consumption—An Experimental Study
,”
Energy Build.
,
43
(
2–3
), pp.
573
580
.
48.
Yuan
,
L.
,
Han
,
A.
,
Ye
,
M.
,
Chen
,
X.
,
Ding
,
C.
, and
Yao
,
L.
,
2018
, “
Preparation, Characterization and Thermal Performance Evaluation of Coating Colored With NIR Reflective Pigments: BiVO4 Coated Mica-Titanium Oxide
,”
Sol. Energy
,
163
, pp.
453
460
.
49.
Frost
,
R. L.
,
Martens
,
W.
,
Williams
,
P. A.
, and
Kloprogge
,
J. T.
,
2002
, “
Raman and Infrared Spectroscopic Study of the Vivianite-Group Phosphates Vivianite, Baricite, and Bobierrite
,”
Mineral. Mag.
,
66
(
6
), pp.
1063
1073
.
50.
Frost
,
R. L.
,
Xi
,
Y.
,
Scholz
,
R.
,
Belotti
,
F. M.
, and
Filho
,
M. C.
,
2013
, “
Infrared and Raman Spectroscopic Characterization of the Phosphate Mineral Leucophosphite K (Fe3+) 2 (PO4) 2 (OH)· 2 (H2O)
,”
Spectrosc. Lett.
,
46
(
6
), pp.
415
420
.
51.
Aravind
,
R.
,
Brahma
,
G. S.
,
Swain
,
T.
, and
Sahu
,
A. K.
,
2021
, “
Synthesis, Characterization of Imidazole-Based Copper Complex Mixtures and Study of Their Thermal Behavior
,”
Int. J. Energy Res.
,
45
(
6
), pp.
9179
9192
.
52.
Nomura
,
N.
,
Tagawa
,
T.
, and
Goto
,
S.
,
1998
, “
In Situ FTIR Study on Hydrogenation of Carbon Dioxide Over Titania-Supported Copper Catalysts
,”
Appl. Catal., A
,
166
(
2
), pp.
321
326
.
53.
Abadzhjieva
,
N.
,
Tzokov
,
P.
,
Uzunov
,
I.
,
Minkov
,
V.
,
Klissurski
,
D.
, and
Rives
,
V.
,
1994
, “
Methanol Oxidation to Formaldehyde on Bismuth Phosphate-Based Catalysts
,”
React. Kinet. Catal. Lett.
,
53
(
2
), pp.
413
418
.
54.
Warner
,
J. K.
,
Cheetham
,
A. K.
,
Nord
,
A. G.
,
Von Dreele
,
R. B.
, and
Yethiraj
,
M.
,
1992
, “
Magnetic Structure of Iron (II) Phosphate, Sarcopside, Fe 3 (PO 4) 2
,”
J. Mater. Chem.
,
2
(
2
), pp.
191
196
.
55.
Belik
,
A. A.
,
Ivanov-Shitz
,
A. K.
,
Bykov
,
A. B.
,
Verin
,
I. A.
,
Golubev
,
A. M.
, and
Nistyuk
,
A. V.
,
2000
, “
Structure and Electric Conductivity of Na 3 PO 4 Single Crystals
,”
Crystallogr. Rep.
,
45
(
6
), pp.
902
906
.
56.
Ghule
,
A.
,
Murugan
,
R.
, and
Chang
,
H.
,
2001
, “
Thermo-Raman Studies on Dehydration of Na3PO4· 12H2O
,”
Thermochim. Acta
,
371
(
1–2
), pp.
127
135
.
57.
Jana
,
S.
,
Panigrahi
,
G.
,
Narayanswamy
,
S.
,
Ishtiyak
,
M.
,
Das
,
M.
,
Bhattacharjee
,
P. P.
,
Niranjan
,
M. K.
, and
Prakash
,
J.
,
2020
, “
Synthesis, Crystal Structure, Optical Absorption Study, and Electronic Structure of Cs3FeCl5
,”
Solid State Sci.
,
100
, p.
106064
.
58.
Moss
,
T. S.
,
1985
, “
Relations Between the Refractive Index and Energy Gap of Semiconductors
,”
Phys. Status Solidi B
,
131
(
2
), pp.
415
427
.
59.
Kumar
,
V.
, and
Singh
,
J. K.
,
2010
, “
Model for Calculating the Refractive Index of Different Materials
,”
Indian J. Pure Appl. Phys.
,
48
(
8
), pp.
571
574
. http://nopr.niscair.res.in/handle/123456789/9962
60.
Reddy
,
R. R.
, and
Ahammed
,
Y. N.
,
1995
, “
A Study on the Moss Relation
,”
Infrared Phys. Technol.
,
36
(
5
), pp.
825
830
.
61.
Samala
,
S.
,
Brahma
,
G. S.
, and
Swain
,
T.
,
2020
, “
Synthesis, Characterization, and Thermal Property of Phosphate-Based Cobalt Mixture of non-Calcined, Calcined, and Composite Material
,”
Monatsh. Chem.
,
151
(
2
), pp.
141
152
.
You do not currently have access to this content.