Abstract

Floating photovoltaic (FPV) plants in reservoirs can contribute to reduce water evaporation, increase power generation efficiency, due to the cooling process, and reduce competitiveness in land use. Based on this motivation, we propose a new methodology for sizing FPV plants in dams of semi-arid regions using the flood duration curve. The methodology innovations are no use of commercial software, the possibility of choosing the reliability level, the application in reservoirs of semi-arid areas of the world, and the use of a graphic analysis of the reservoir hydrological behavior. The case studies in the Brazilian and Australian semi-arid consider two scenarios: high reliability level (90%, scenario 1) and low reliability level (70%, scenario 2). The reliability level is linked to the electricity production; the evaporation reduction is proportional to the FPV plant area.

References

1.
Dias
,
L.
,
Gouveia
,
J. P.
,
Lourenço
,
P.
, and
Seixas
,
J.
,
2019
, “
Interplay Between the Potential of Photovoltaic Systems and Agricultural Land Use
,”
Land Use Policy
,
81
(
1
), pp.
725
735
2.
Patel
,
B.
,
Gami
,
B.
,
Baria
,
V.
,
Patel
,
A.
, and
Patel
,
P.
,
2019
, “
Co-generation of Solar Electricity and Agriculture Produce by Photovoltaic and Photosynthesis—Dual Model by Abellon, India
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031014
.
3.
Niazi
,
K. A. K.
,
Yang
,
Y.
, and
Sera
,
D.
,
2019
, “
Review of Mismatch Mitigation Techniques for PV Modules
,”
IET Renew. Power Gener.
,
13
(
12
), pp.
2035
2050
.
4.
Haque
,
M. A.
,
Miah
,
M. A. K.
,
Hossain
,
S.
, and
Rahman
,
M. H.
,
2021
, “
Passive Cooling Configurations for Enhancing the Photovoltaic Efficiency in Hot Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011009
.
5.
Smith
,
M. K.
,
Selbak
,
H.
,
Wamser
,
C. C.
,
Day
,
N. U.
,
Krieske
,
M.
,
Sailor
,
D. J.
, and
Rosenstiel
,
T. N.
,
2014
, “
Water Cooling Method to Improve the Performance of Field-Mounted, Insulated, and Concentrating Photovoltaic Modules
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
034503
.
6.
Maghami
,
M. R.
,
Hizam
,
H.
,
Gomes
,
C.
,
Radzi
,
M. A.
,
Rezadad
,
M. I.
, and
Hajighorbani
,
S.
,
2016
, “
Power Loss Due to Soiling on Solar Panel: A Review
,”
Renew. Sustain. Energy Rev.
,
59
, pp.
1307
1316
.
7.
Abdallah
,
M.
,
Khaiyat
,
A.
,
Basaheeh
,
A.
,
Kotsovos
,
K.
,
Ballard
,
I.
,
AlSaggaf
,
A.
,
Gereige
,
I.
, and
Théron
,
R.
,
2021
, “
Soiling Loss Rate Measurements of Photovoltaic Modules in a Hot and Humid Desert Environment
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031005
.
8.
Carneiro
,
T. C.
,
de Carvalho
,
P. C. M.
,
Alves dos Santos
,
H.
,
Lima
,
M. A. F. B.
, and
Braga
,
A. P. d. S.
,
2021
, “
Review on Photovoltaic Power and Solar Resource Forecasting: Current Status and Trends
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
010801
.
9.
Ferrer-Gisbert
,
C.
,
Ferrán-Gozálvez
,
J. J.
,
Redón-Santafé
,
M.
,
Ferrer-Gisbert
,
P.
,
Sánchez-Romero
,
F. J.
, and
Torregrosa-Soler
,
J. B.
,
2013
, “
A New Photovoltaic Floating Cover System for Water Reservoirs
,”
Renew. Energy
,
60
(
1
), pp.
63
70
.
10.
Abd El-Hamid
,
M.
,
Wei
,
G.
,
Sherin
,
M.
,
Cui
,
L.
, and
Du
,
X.
,
2021
, “
Comparative Study of Different Photovoltaic/Thermal Hybrid Configurations From Energetic and Exergetic Points of View: A Numerical Analysis
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061006
.
11.
Kamuyu
,
C. L. W.
,
Lim
,
J. R.
,
Won
,
C. S.
, and
Ahn
,
H. K.
,
2018
, “
Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs
,”
Energies
,
11
(
2
), p.
447
.
12.
Lee
,
S. H.
,
Choi
,
Y. K.
,
Hwang
,
S.
, and
Lee
,
J.
,
2018
, “
Performance Analysis of Floating Photovoltaic Systems on the Water Surface
,”
Sci. Adv. Mater.
,
10
(
4
), pp.
538
541
.
13.
Sacramento
,
E. M.
,
Carvalho
,
P. C. M.
,
Araújo
,
J. C.
,
Riffel
,
D. B.
,
da Cruz Corrêa
,
R. M.
, and
Neto
,
J. S. P.
,
2015
, “
Scenarios for Use of Floating Photovoltaic Plants in Brazilian Reservoirs
,”
IET Renew. Power Gener.
,
9
(
8
), pp.
1019
1024
.
14.
El Hammoumi
,
A.
,
Chalh
,
A.
,
Allouhi
,
A.
,
Motahhir
,
S.
,
El Ghzizal
,
A.
, and
Derouich
,
A.
,
2020
, “
Design and Construction of a Test Bench to Investigate the Potential of Floating PV Systems
,”
J. Cleaner Prod.
,
278
(
1
), p.
123917
.
15.
Zubair
,
M.
,
Bilal Awan
,
A.
,
Ghuffar
,
S.
,
Butt
,
A. D.
, and
Farhan
,
M.
,
2020
, “
Analysis and Selection Criteria of Lakes and Dams of Pakistan for Floating Photovoltaic Capabilities
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031001
.
16.
Hassan
,
M. M.
,
Peirson
,
W. L.
,
Neyland
,
B. M.
, and
Fiddis
,
N. M.
,
2015
, “
Evaporation Mitigation Using Floating Modular Devices
,”
J. Hydrol.
,
530
, pp.
742
750
.
17.
Maués
,
J. A.
,
2019
, “
Floating Solar PV–Hydroelectric Power Plants in Brazil: Energy Storage Solution With Great Application Potential
,”
Int. J. Energy Prod. Manage.
,
4
(
1
), pp.
40
52
.
18.
Kim
,
S.-M.
,
Oh
,
M.
, and
Park
,
H.-D.
,
2019
, “
Analysis and Prioritization of the Floating Photovoltaic System Potential for Reservoirs in Korea
,”
Appl. Sci.
,
9
(
3
), p.
395
.
19.
Liu
,
L.
,
Wang
,
Q.
,
Lin
,
H.
,
Li
,
H.
,
Sun
,
Q.
, and
Wennersten
,
R
,
2017
, “
Power Generation Efficiency and Prospects of Floating Photovoltaic Systems
,”
Energy Proc.
,
105
(
1
), pp.
1136
1142
.
20.
Alves
,
H.
, and
Valenca
,
M.
,
2013
, “
Using Curves of Permanence to Study the Contribution of Input Variables in Artificial Neural Network Models: A New Proposed Methodology
,”
2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence
,
Ipojuca, Brazil
,
Sept. 8
, IEEE, pp.
409
414
.
21.
Vogel
,
R. M.
, and
Fennessey
,
N. M.
,
1995
, “
Flow Duration Curves II: A Review of Applications in Water Resources Planning 1
,”
JAWRA J. Am. Water Res. Ass.
,
31
(
6
), pp.
1029
1039
.
22.
Lopes
,
M. P. C.
,
de Andrade Neto
,
S.
,
Branco
,
D. A. C.
,
de Freitas
,
M. A. V.
, and
da Silva Fidelis
,
N.
,
2020
, “
Water-Energy Nexus: Floating Photovoltaic Systems Promoting Water Security and Energy Generation in the Semiarid Region of Brazil
,”
J. Cleaner Prod.
,
273
, p.
122010
.
23.
Rodrigues
,
I. S.
,
Ramalho
,
G. L. B.
, and
Medeiros
,
P. H. A.
,
2020
, “
Potential of Floating Photovoltaic Plant in a Tropical Reservoir in Brazil
,”
J. Environ. Plan. Manage.
,
63
(
13
), pp.
2334
2356
.
24.
Carvalho
,
P. C. M.
,
Machado
,
L. A.
,
Vitoriano
,
C. T.
, and
Ramírez
,
L. M. F.
,
2018
, “
Land Requirement Scenarios of PV Plants in Brazil
,”
Renew. Energy Power Q. J. Espanha
,
1
(
16
), pp.
170
174
.
25.
Siecker
,
J.
,
Kusakana
,
K.
, and
Numbi
,
B.
,
2017
, “
A Review of Solar Photovoltaic Systems Cooling Technologies
,”
Renew. Sustain. Energy Rev.
,
79
, pp.
192
203
.
26.
Farfan
,
J.
, and
Breyer
,
C.
,
2018
, “
Combining Floating Solar Photovoltaic Power Plants and Hydropower Reservoirs: A Virtual Battery of Great Global Potential
,”
Energy Proc.
,
155
(
1
), pp.
403
411
.
27.
Trapani
,
K.
, and
Santafé
,
M. R.
,
2015
, “
A Review of Floating Photovoltaic Installations: 2007–2013
,”
Progress Photovoltaics: Res. Appl.
,
23
(
4
), pp.
524
532
.
28.
Sahu
,
A.
,
Yadav
,
N.
, and
Sudhakar
,
K.
,
2016
, “
Floating Photovoltaic Power Plant: A Review
,”
Renew. Sustain. Energy Rev.
,
66
(
1
), pp.
815
824
.
29.
Cazzaniga
,
R.
,
Cicu
,
M.
,
Rosa-Clot
,
M.
,
Rosa-Clot
,
P.
,
Tina
,
G. M.
, and
Ventura
,
C.
,
2018
, “
Floating Photovoltaic Plants: Performance Analysis and Design Solutions
,”
Renew. Sustain. Energy Rev.
,
81
(
1
), pp.
1730
1741
.
30.
Ranjbaran
,
P.
,
Yousefi
,
H.
,
Gharehpetian
,
G.
, and
Astaraei
,
F. R.
,
2019
, “
A Review on Floating Photovoltaic (FPV) Power Generation Units
,”
Renew. Sustain. Energy Rev.
,
110
(
1
), pp.
332
347
.
31.
Friel
,
D.
,
Karimirad
,
M.
,
Whittaker
,
T.
,
Doran
,
J.
, and
Howlin
,
E.
,
2019
, “
A Review of Floating Photovoltaic Design Concepts and Installed Variations.
4th International Conference on Offshore Renewable Energy, CORE2019 Proceedings
,
Glasgow, UK
,
Aug. 29–30
, pp.
1
10
.
32.
Patil
,
S.
,
Wagh
,
M.
, and
Shinde
,
N.
,
2017
, “
A Review on Floating Solar Photovoltaic Power Plants
,”
Int. J. Sci. Eng. Res.
,
8
(
6
), pp.
789
794
.
33.
Abid
,
M.
,
Abid
,
Z.
,
Sagin
,
J.
,
Murtaza
,
R.
,
Sarbassov
,
D.
, and
Shabbir
,
M.
,
2019
, “
Prospects of Floating Photovoltaic Technology and Its Implementation in Central and South Asian Countries
,”
Int. J. Environ. Sci. Technol.
,
16
(
3
), pp.
1755
1762
.
34.
Oliveira-Pinto
,
S.
, and
Stokkermans
,
J.
,
2020
, “
Assessment of the Potential of Different Floating Solar Technologies—Overview and Analysis of Different Case Studies
,”
Energy. Convers. Manage.
,
211
, p.
112747
.
35.
Ziar
,
H.
,
Prudon
,
B.
,
Lin
,
F.-Y.
,
Roeffen
,
B.
,
Heijkoop
,
D.
,
Stark
,
T.
,
Teurlincx
,
S.
, et al.,
2021
, “
Innovative Floating Bifacial Photovoltaic Solutions for Inland Water Areas
,”
Prog. Photovoltaics: Res. Appl.
,
29
(
7
), pp.
725
743
.
36.
Empresa de Pesquisa Energética - Ministério de Minas e Energia do Brazil
,
2020
, “
Expansão da Geração – Solar Fotovoltaica Flutuante, Rio de Janeiro, Brazil
,” Empresa de Pesquisa Energética - Ministério de Minas e Energia do Brazil, Brazil.
37.
Azami
,
S.
,
Vahdaty
,
M.
, and
Torabi
,
F.
,
2017
, “
Theoretical Analysis of Reservoir-Based Floating Photovoltaic Plant for 15-khordad Dam in Delijan
,”
Energy Equip. Syst.
,
5
(
2
), pp.
211
218
.
38.
Choi
,
Y.-K.
,
2014
, “
A Study on Power Generation Analysis of Floating PV System Considering Environmental Impact
,”
Int. J. Softw. Eng. Appl.
,
8
(
1
), pp.
75
84
.
39.
Lee
,
Y.-G.
,
Joo
,
H.-J.
, and
Yoon
,
S.-J.
,
2014
, “
Design and Installation of Floating Type Photovoltaic Energy Generation System Using Frp Members
,”
Sol. Energy
,
108
(
1
), pp.
13
27
.
40.
Trapani
,
K.
, and
Millar
,
D. L.
,
2013
, “
Proposing Offshore Photovoltaic (PV) Technology to the Energy Mix of the Maltese Islands
,”
Energy Convers. Manage.
,
67
(
1
), pp.
18
26
.
41.
Temiz
,
M.
, and
Javani
,
N.
,
2020
, “
Design and Analysis of a Combined Floating Photovoltaic System for Electricity and Hydrogen Production
,”
Int. J. Hydrogen Energy
,
45
(
5
), pp.
3457
3469
.
42.
Campana
,
P. E.
,
Wästhage
,
L.
,
Nookuea
,
W.
,
Tan
,
Y.
, and
Yan
,
J.
,
2019
, “
Optimization and Assessment of Floating and Floating-Tracking PV Systems Integrated in On-and Off-Grid Hybrid Energy Systems
,”
Sol. Energy
,
177
(
1
), pp.
782
795
.
43.
Cazzaniga
,
R.
,
Cicu
,
M.
,
Rosa-Clot
,
M.
,
Rosa-Clot
,
P.
,
Tina
,
G.
, and
Ventura
,
C.
,
2017
, “
Compressed Air Energy Storage Integrated With Floating Photovoltaic Plant
,”
J. Energy Storage
,
13
(
1
), pp.
48
57
.
44.
Solomin
,
E.
,
Sirotkin
,
E.
,
Cuce
,
E.
,
Selvanathan
,
S. P.
, and
Kumarasamy
,
S.
,
2021
, “
Hybrid Floating Solar Plant Designs: A Review
,”
Energies
,
14
(
10
), p.
2751
.
45.
Yadav
,
N.
,
Gupta
,
M.
, and
Sudhakar
,
K.
,
2016
, “
Energy Assessment of Floating Photovoltaic System
,”
2016 International Conference on Electrical Power and Energy Systems (ICEPES)
,
Bhopal, India
,
Dec. 14–16
, IEEE, pp.
264
269
.
46.
Mittal
,
D.
,
Saxena
,
B. K.
, and
Rao
,
K.
,
2017
, “
Comparison of Floating Photovoltaic Plant With Solar Photovoltaic Plant for Energy Generation at Jodhpur in India
,”
2017 International Conference on Technological Advancements in Power and Energy (TAP Energy)
,
Kollam, India
,
Dec. 21–23
, IEEE, pp.
1
6
.
47.
Cazzaniga
,
R.
,
Rosa-Clot
,
M.
,
Rosa-Clot
,
P.
, and
Tina
,
G. M.
,
2012
, “
Floating Tracking Cooling Concentrating (FTCC) Systems
,”
38th IEEE Photovoltaic Specialists Conference
,
Austin, TX
,
June 3–8
, EUA, pp.
514
519
.
48.
Fereshtehpour
,
M.
,
Sabbaghian
,
R. J.
,
Farrokhi
,
A.
,
Jovein
,
E. B.
, and
Sarindizaj
,
E. E.
,
2021
, “
Evaluation of Factors Governing the Use of Floating Solar System: A Study on Iran’s Important Water Infrastructures
,”
Renew. Energy
,
171
, pp.
1171
1187
.
49.
Sanchez
,
R. G.
,
Kougias
,
I.
,
Moner-Girona
,
M.
,
Fahl
,
F.
, and
Jäger-Waldau
,
A.
,
2021
, “
Assessment of Floating Solar Photovoltaics Potential in Existing Hydropower Reservoirs in Africa
,”
Renew. Energy
,
169
, pp.
687
699
.
50.
Hayibo
,
K. S.
,
Mayville
,
P.
,
Kailey
,
R. K.
, and
Pearce
,
J. M.
,
2020
, “
Water Conservation Potential of Self-Funded Foam-Based Flexible Surface-Mounted Floatovoltaics
,”
Energies
,
13
(
23
), p.
6285
.
51.
Mayville
,
P.
,
Patil
,
N. V.
, and
Pearce
,
J. M.
,
2020
, “
Distributed Manufacturing of After Market Flexible Floating Photovoltaic Modules
,”
Sustain. Energy Technol. Assess.
,
42
, p.
100830
.
52.
Exley
,
G.
,
Armstrong
,
A.
,
Page
,
T.
, and
Jones
,
I. D.
,
2021
, “
Floating Photovoltaics Could Mitigate Climate Change Impacts on Water Body Temperature and Stratification
,”
Sol. Energy
,
219
(
1
), pp.
24
33
.
53.
Pašalić
,
S.
,
Akšamović
,
A.
, and
Avdaković
,
S.
,
2018
, “
Floating Photovoltaic Plants on Artificial Accumulations—Example of Jablanica Lake
,”
5th IEEE International Energy Conference
,
Limassol, Cyprus
,
June 3–7
, IEEE, pp.
1
6
.
54.
Song
,
J.
, and
Choi
,
Y.
,
2016
, “
Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea
,”
Energies
,
9
(
2
), p.
102
.
55.
Rahman
,
M. W.
,
Mahmud
,
M. S.
,
Ahmed
,
R.
,
Rahman
,
M. S.
, and
Arif
,
M. Z.
,
2017
, “
Solar Lanes and Floating Solar PV: New Possibilities for Source of Energy Generation in Bangladesh
,”
2017 Innovations in Power and Advanced Computing Technologies (i-PACT)
,
Vellore, India
,
Apr. 21–22
, IEEE, pp.
1
6
.
56.
Umoette
,
A. T.
,
Ubom
,
E. A.
, and
Festus
,
M. U.
,
2016
, “
Design of Stand Alone Floating PV System for Ibeno Health Centre
,”
Sci. J. Energy Eng.
,
4
(
6
), pp.
56
61
.
57.
Ates
,
A. M.
,
Yilmaz
,
O. S.
, and
Gulgen
,
F.
,
2020
, “
Using Remote Sensing to Calculate Floating Photovoltaic Technical Potential of a Dam’s Surface
,”
Sustain. Energy Technol. Assess.
,
41
(
1
), p.
100799
.
58.
Lopes
,
M. P. C.
,
Nogueira
,
T.
,
Santos
,
A. J. L.
,
Branco
,
D. C.
, and
Pouran
,
H.
,
2021
, “
Technical Potential of Floating Photovoltaic Systems on Artificial Water Bodies in Brazil
,”
Renew. Energy
,
181
, pp.
1023
1033
.
59.
da Silva
,
G. D. P.
, and
Branco
,
D. A. C.
,
2018
, “
Modelling Distributed Photovoltaic System With and Without Battery Storage: A Case Study in Belem, Northern Brazil
,”
J. Energy Storage
,
17
, pp.
11
19
.
60.
Silvério
,
N. M.
,
Barros
,
R. M.
,
Tiago Filho
,
G. L.
,
Redón-Santafé
,
M.
, and
de Mello Valério
,
V. E.
,
2018
, “
Use of Floating PV Plants for Coordinated Operation With Hydropower Plants: Case Study of the Hydroelectric Plants of the São Francisco River Basin
,”
Energy Convers. Manage.
,
171
(
1
), pp.
339
349
.
61.
Teixeira
,
L. E.
,
Caux
,
J.
,
Beluco
,
A.
,
Bertoldo
,
I.
,
Louzada
,
J. A. S.
, and
Eifler
,
R. C.
,
2015
, “
Feasibility Study of a Hydro PV Hybrid System Operating at a Dam for Water Supply in Southern Brazil
,”
J. Power Energy Eng.
,
3
(
9
), p.
70
.
62.
Vasco
,
G.
,
Silva
,
J. S.
, and
Beluco
,
A.
,
2018
, “
Feasibility Study of a PV Hydro Hybrid System, With Photovoltaic Panels on Floating Structures
,”
3rd Asia Conference on Power and Electrical Engineering (ACPEE 2018)
,
Kitakyushu, Japan
,
Mar. 22–24
, IOP Publishing, pp.
1
6
.
63.
Cavalcanti
,
E. S. C.
, and
Petti
,
A. C. G.
,
2008
, “
Assessment of segs-Like Power Plants for the Brazilian Northeast Region
,”
ASME J. Sol. Energy Eng.
,
130
(
1
), p.
014501
.
64.
Sulaeman
,
S.
,
Brown
,
E.
,
Quispe-Abad
,
R.
, and
Müller
,
N.
,
2020
, “
Floating PV System as an Alternative Pathway to the Amazon Dam Underproduction
,”
Renew. Sustain. Energy Rev.
,
135
, p.
110082
.
65.
Galdino
,
J. C. d. S.
,
Freitas
,
M. A. V.
,
Silva
,
N. F. D.
,
Pereira
,
M. G.
, and
Ferreira
,
J. M. D.
,
2020
, “
Creating the Path for Sustainability: Inserting Solar PV in São Francisco Transposition Project
,”
Sustainability
,
12
(
21
), p.
8982
.
66.
Glasson
,
J.
, and
Therivel
,
R.
,
2019
,
Introduction to Environmental Impact Assessment
, 5th ed.,
Routledge
,
London
.
67.
Gorjian
,
S.
,
Sharon
,
H.
,
Ebadi
,
H.
,
Kant
,
K.
,
Scavo
,
F. B.
, and
Tina
,
G. M.
,
2021
, “
Recent Technical Advancements, Economics and Environmental Impacts of Floating Photovoltaic Solar Energy Conversion Systems
,”
J. Cleaner Prod.
,
278
(
1
), p.
124285
.
68.
Bahri
,
M.
,
2020
, “
Analysis of the Water, Energy, Food and Land Nexus Using the System Archetypes: A Case Study in the Jatiluhur Reservoir, West Java, Indonesia
,”
Sci. Total Environ.
,
716
(
1
), p.
137025
.
69.
Campos
,
E. B.
,
Pereira
,
É. F.
,
van Oel
,
P.
,
Martins
,
F. R.
,
Gonçalves
,
A. R.
, and
Costa
,
R. S.
,
2021
, “
Hybrid Power Generation for Increasing Water and Energy Securities During Drought: Exploring Local and Regional Effects in a Semi-Arid Basin
,”
J. Environ. Manage.
,
294
, p.
112989
.
70.
da Silva
,
D. F.
,
2016
, “
Detection of Climate Trends in Macroregions of the Ceará State Using Funceme Data
,”
Acta Scientiarum. Technol.
,
38
(
1
), pp.
107
114
.
71.
Güntner
,
A.
,
Krol
,
M. S.
,
Araújo
,
J. C. D.
, and
Bronstert
,
A.
,
2004
, “
Simple Water Balance Modelling of Surface Reservoir Systems in a Large Data-Scarce Semiarid Region
,”
Hydrol. Sci. J.
,
49
(
5
), pp.
901
918
.
72.
Rodrigues
,
I. S.
,
Costa
,
C. A. G.
,
Neto
,
I. E. L.
, and
Hopkinson
,
C.
,
2021
, “
Trends of Evaporation in Brazilian Tropical Reservoirs Using Remote Sensing
,”
J. Hydrol.
,
598
, p.
126473
.
73.
ATLAS
,
2019
,
Wind and Solar Atlas: Ceará
,
Camargo-Schubert Associated Engineers
,
Curitiba
.
74.
Mueller
,
N.
,
Lewis
,
A.
,
Roberts
,
D.
,
Ring
,
S.
,
Melrose
,
R.
,
Sixsmith
,
J.
,
Lymburner
,
L.
,
McIntyre
,
A.
,
Tan
,
P.
,
Curnow
,
S.
, and
Ip
,
A.
,
2016
, “
Water Observations From Space: Mapping Surface Water From 25 Years of Landsat Imagery Across Australia
,”
Remote Sens. Environ.
,
174
, pp.
341
352
.
75.
Back
,
G. J. D.
,
Zambrano
,
Á. J.
, and
Corseuil
,
C. W.
,
2019
, “
Streamflow Permanence Curve of the River Timbó, Santa Catarina, Brazil
,”
Acta Brasiliensis
,
3
(
2
), pp.
56
62
.
76.
Haas
,
J.
,
Khalighi
,
J.
,
De La Fuente
,
A.
,
Gerbersdorf
,
S.
,
Nowak
,
W.
, and
Chen
,
P.-J.
,
2020
, “
Floating Photovoltaic Plants: Ecological Impacts Versus Hydropower Operation Flexibility
,”
Energy Convers. Manage.
,
206
, p.
112414
.
77.
Marinakis
,
V.
,
Doukas
,
H.
,
Tsapelas
,
J.
,
Mouzakitis
,
S.
, and
Sgouridis
,
S.
,
2020
, “
From Big Data to Smart Energy Services: An Application for Intelligent Energy Management
,”
Future Gener. Comput. Syst.
,
110
, pp.
572
586
.
78.
Chow
,
V. T.
,
Maidment
,
D. R.
, and
Mays
,
L. W.
,
1988
,
Applied Hydrology
, 1 ed.,
MacGraw-Hill International Editions
,
New York
.
79.
Jensen
,
M. E.
, and
Allen
,
R. G.
,
2016
, “
Evaporation, Evapotranspiration, and Irrigation Water Requirements
,” ASCE Manuals and Reports on Engineering Practice, No. 70, American Society of Civil Engineers, 20, pp.
1
769
.
80.
Reis
,
R. J.
, and
Dias
,
N. L.
,
1998
, “
Multi-season Lake Evaporation: Energy-Budget Estimates and CRLE Model Assessment With Limited Meteorological Observations
,”
J. Hydrol.
,
208
(
3–4
), pp.
135
147
.
81.
Rodrigues
,
C. M.
,
Moreira
,
M.
,
Guimarães
,
R. C.
, and
Potes
,
M.
,
2020
, “
Reservoir Evaporation in a Mediterranean Climate: Comparing Direct Methods in Alqueva Reservoir, Portugal
,”
Hydrol. Earth Syst. Sci.
,
24
(
12
), pp.
5973
5984
.
82.
Vieira
,
M. T.
,
Meireles
,
A. C.
, and
de Oliveira
,
C. W.
,
2017
, “
Koppen-Geiger and Thornthwaite Climatic Classification for the Metropolitan Region of the Cariri, Ceará
,”
Revista Geama
,
3
(
3
), pp.
136
143
.
83.
De Araujo
,
J. C.
,
Güntner
,
A.
, and
Bronstert
,
A.
,
2006
, “
Loss of Reservoir Volume by Sediment Deposition and Its Impact on Water Availability in Semiarid Brazil
,”
Hydrol. Sci. J.
,
51
(
1
), pp.
157
170
.
You do not currently have access to this content.