This study investigates the potential of oxygenated additive (ethanol) on adulterated diesel fuel on the performance and exhaust emission characteristics of a single cylinder diesel engine. Based on the engine experimental data, two artificial intelligence (AI) models, viz., artificial neural network (ANN) and adaptive-neuro fuzzy inference system (ANFIS), have been modeled for predicting brake thermal efficiency (Bth), brake specific energy consumption (BSEC), oxides of nitrogen (NOx), unburnt hydrocarbon (UBHC) and carbon monoxide (CO) with engine load (%), kerosene (vol %), and ethanol (vol %) as input parameters. Both the proposed AI models have the capacity for predicting input–output paradigms of diesel–kerosene–ethanol (diesosenol) blends with high accuracy. A (3–9–5) topology with Levenberg–Marquardt feed forward back propagation (trainlm) learning algorithm has been observed to be the ideal model for ANN. The comparative study of the two AI models demonstrated that ANFIS predicted results have higher accuracy than the ANN with a maximum RANFIS/RANN value of 1.000534.

References

1.
Ghobadian
,
B.
,
Rahimi
,
H.
,
Nikbakht
,
A. M.
,
Najafi
,
G.
, and
Yusaf
,
T. F.
,
2009
, “
Diesel Engine Performance and Exhaust Emission Analysis Using Waste Cooking Biodiesel Fuel With an Artificial Neural Network
,”
Renewable Energy
,
34
, pp.
976
982
.
2.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
,
Giakoumis
,
E. G.
, and
Dimaratos
,
A. M.
,
2012
, “
Characteristics of Performance and Emissions in High-Speed Direct Injection Diesel Engine Fueled With Diethyl Ether/Diesel Fuel Blends
,”
Energy
,
43
, pp.
214
224
.
3.
Paul
,
A.
,
Bose
,
P. K.
,
Panua
,
R. S.
, and
Debroy
,
D.
,
2015
, “
Study of Performance and Emission Characteristics of a Single Cylinder CI Engine Using Diethyl Ether and Ethanol Blends
,”
J. Energy Inst.
,
88
(
1
), pp.
1
10
.
4.
Ziegler
,
K.
, and
Manka
,
J.
,
2000
, “
The Effect of Mixing Diesel Fuels Additized With Kerosene and Cloud Point Depressants
,”
SAE
Paper No. 2000-01-2884.
5.
Bhowmik
,
S.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Paul
,
A.
,
2017
, “
Artificial Neural Network Prediction of Diesel Engine Performance and Emission Fueled With Diesel-Kerosene-Ethanol Blends: A Fuzzy Based Optimization
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042201
.
6.
Yadav
,
S.
,
Murthy
,
K.
,
Mishra
,
D.
, and
Baral
,
B.
,
2005
, “
Estimation of Petrol and Diesel Adulteration With Kerosene and Assessment of Usefulness of Selected Automobile Fuel Quality Test Parameters
,”
Int. J. Environ. Sci. Technol.
,
1
(
4
), pp.
253
255
.
7.
Bergstrand
,
P.
,
2007
, “
Effects on Combustion by Using Kerosene or MK1 Diesel
,”
SAE
Paper No. 2007-01-0002.
8.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2016
, “
Diesoline, Diesohol, and Diesosene Fuelled HCCI Engine Development
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052212
.
9.
Hossain
,
A. K.
,
Ouadi
,
M.
,
Siddiqui
,
S. U.
,
Yang
,
Y.
,
Brammer
,
J.
,
Hornung
,
A.
,
Kay
,
M.
, and
Davies
,
P. A.
,
2013
, “
Experimental Investigation of Performance, Emission and Combustion Characteristics of an Indirect Injection Multi-Cylinder CI Engine Fuelled by Blends of De-Inking Sludge Pyrolysis Oil With Biodiesel
,”
Fuel
,
105
, pp.
135
142
.
10.
Rinaldini
,
C. A.
,
Mattarelli
,
E.
,
Savioli
,
T.
,
Cantore
,
G.
,
Garbero
,
M.
, and
Bologna
,
A.
,
2016
, “
Performance, Emission and Combustion Characteristics of a IDI Engine Running on Waste Plastic Oil
,”
Fuel
,
183
, pp.
292
303
.
11.
Sahin
,
Z.
,
Durgun
,
O.
, and
Bayram
,
C.
,
2012
, “
Experimental Investigation of Gasoline Fumigation in a Turbocharged IDI Diesel Engine
,”
Fuel
,
95
, pp.
113
121
.
12.
Leevijit
,
T.
, and
Prateepchaikul
,
G.
,
2011
, “
Comparative Performance and Emissions of IDI-Turbo Automobile Diesel Engine Operated Using Degummed, Deacidified Mixed Crude Palm Oil–Diesel Blends
,”
Fuel
,
90
, pp.
1487
1491
.
13.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2015
, “
An Experimental Study of the Performance, Combustion and Emission Characteristics of a CI Engine Under Dual Fuel Mode Using CNG and Oxygenated Pilot Fuel Blends
,”
Energy
,
86
, pp.
560
573
.
14.
Paul
,
A.
,
Bose
,
P. K.
,
Panua
,
R. S.
, and
Banerjee
,
R.
,
2013
, “
An Experimental Investigation of Performance-Emission Trade Off of a CI Engine Fueled by Diesel–Compressed Natural Gas (CNG) Combination and Diesel–Ethanol Blends With CNG Enrichment
,”
Energy
,
55
, pp.
787
802
.
15.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2017
, “
Effect of Diethyl Ether and Ethanol on Performance, Combustion, and Emission of Single-Cylinder Compression Ignition Engine
,”
Int. J. Ambient Energy
,
38
(
1
), pp.
2
13
.
16.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2015
, “
Effect of Diesel-Ethanol-PPME (Pongamia pinata Methyl Ester) Blends as Pilot Fuel on CNG Dual-Fuel Operation of a CI Engine: A Performance-Emission Trade-Off Study
,”
Energy Fuels
,
29
(4), pp.
2394
2407
.
17.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2016
, “
A Performance Emission Trade Off Study of a CI Engine Fueled by Compressed Natural Gas (CNG)/Diesel–Ethanol-PPME Blend Combination
,”
Environ. Prog. Sustainable Energy
,
35
(2), pp.
517
530
.
18.
Huang
,
J.
,
Wang
,
Y.
,
Li
,
S.
,
Roskilly
,
A. P.
,
Yu
,
H.
, and
Li
,
H.
,
2009
, “
Experimental Investigation on the Performance and Emissions of a Diesel Engine Fuelled With Ethanol–Diesel Blends
,”
Appl. Therm. Eng.
,
29
, pp.
2484
2490
.
19.
Lapuerta
,
M.
,
Armas
,
O.
, and
Herreros
,
J. M.
,
2008
, “
Emissions From a Diesel Bioethanol Blend in an Automotive Diesel Engine
,”
Fuel
,
87
, pp.
25
31
.
20.
Hardenberg
,
H.
, and
Schaefer
,
A.
,
1981
, “
The Use of Ethanol as a Fuel for Compression Ignition Engines
,”
SAE
Paper No. 811211.
21.
Ahmed
,
I.
,
2001
, “
Oxygenated Diesel: Emissions and Performance Characteristics of Ethanol-Diesel Blends in CI Engines
,”
SAE
Paper No. 2001-01-2475.
22.
Roy
,
S.
,
Banerjee
,
R.
, and
Bose
,
P. K.
,
2014
, “
Performance and Exhaust Emissions Prediction of a CRDI Assisted Single Cylinder Diesel Engine Coupled With EGR Using Artificial Neural Network
,”
Appl. Energy
,
119
, pp.
330
340
.
23.
Taghavifar
,
H.
,
Taghavifar
,
H.
,
Mardani
,
A.
, and
Mohebbi
,
A.
,
2014
, “
Exhaust Emissions Prognostication for DI Diesel Group-Hole Injectors Using a Supervised Artificial Neural Network Approach
,”
Fuel
,
125
, pp.
81
89
.
24.
Roy
,
S.
,
Das
,
A. K.
,
Bhadouria
,
V. S.
,
Mallik
,
S. R.
,
Banerjee
,
R.
, and
Bose
,
P. K.
,
2015
, “
Adaptive-Neuro Fuzzy Inference System (ANFIS) Based Prediction of Performance and Emission Parameters of a CRDI Assisted Diesel Engine Under CNG Dual-Fuel Operation
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
274
283
.
25.
Al-Hinti
,
I.
,
Samhouri
,
M.
,
Al-Ghandoor
,
A.
, and
Sakhrieh
,
A.
,
2009
, “
The Effect of Boost Pressure on the Performance Characteristics of a Diesel Engine: A Neuro-Fuzzy Approach
,”
Appl. Energy
,
86
(
1
), pp.
113
121
.
26.
Oğuz
,
H.
,
Sarıtas
,
I.
, and
Baydan
,
H. E.
,
2010
, “
Prediction of Diesel Engine Performance Using Biofuels With Artificial Neural Network
,”
Expert Syst. Appl.
,
37
(
9
), pp.
6579
6586
.
27.
Rezaei
,
J.
,
Shahbakhti
,
M.
,
Bahri
,
B.
, and
Aziz
,
A. A.
,
2015
, “
Performance Prediction of HCCI Engines With Oxygenated Fuels Using Artificial Neural Networks
,”
Appl. Energy
,
138
, pp.
460
473
.
28.
Ismail
,
H. M.
,
Ng
,
H. K.
,
Queck
,
C. W.
, and
Gan
,
S.
,
2012
, “
Artificial Neural Networks Modelling of Engine-Out Responses for a Light-Duty Diesel Engine Fuelled With Biodiesel Blends
,”
Appl. Energy
,
92
, pp.
769
777
.
29.
Hassoun
,
M. H.
,
2008
,
Fundamentals of Artificial Neural Networks
,
PHI Learning Private Limited
,
New Delhi, India
.
30.
Yusaf
,
T. F.
,
Buttsworth
,
D. R.
,
Saleh
,
K. H.
, and
Yousif
,
B. F.
,
2010
, “
CNGDiesel Engine Performance and Exhaust Emission Analysis With the Aid of Artificial Neural Network
,”
Appl. Energy
,
87
(
5
), pp.
1661
1669
.
31.
Najafi
,
G.
,
Ghobadian
,
B.
,
Tavakoli
,
T.
,
Buttsworth
,
D. R.
,
Yusaf
,
T. F.
, and
Faizollahnejad
,
M.
,
2009
, “
Performance and Exhaust Emissions of a Gasoline Engine With Ethanol Blended Gasoline Fuels Using Artificial Neural Network
,”
Appl. Energy
,
86
(
5
), pp.
630
639
.
32.
Cay
,
Y.
,
Cicek
,
A.
,
Kara
,
F.
, and
Sagiroglu
,
S.
,
2012
, “
Prediction of Engine Performance for an Alternative Fuel Using Artificial Neural Network
,”
Appl. Therm. Eng.
,
37
, pp.
217
225
.
33.
Dawson
,
C. W.
,
Abrahart
,
R. J.
, and
See
,
L. M.
,
2007
, “
HydroTest: A Web-Based Toolbox of Evaluation Metrics for the Standardised Assessment of Hydrological Forecasts
,”
Environ. Modell. Software
,
22
, pp.
1034
52
.
34.
Nash
,
J. E.
, and
Sutcliffe
,
J. V.
,
1970
, “
River Flow Forecasting Through Conceptual Models Part I—A Discussion of Principles
,”
J. Hydrol.
,
10
, pp.
282
90
.
35.
Gupta
,
H. V.
,
Kling
,
H.
,
Yilmaz
,
K. K.
, and
Martinez
,
G. F.
,
2009
, “
Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling
,”
J. Hydrol.
,
377
, pp.
80
91
.
36.
Bliemel
,
F.
,
1973
, “
Theil's Forecast Accuracy Coefficient: A Clarification
,”
J. Mark Res.
,
10
, pp.
444
6
.
You do not currently have access to this content.