The present work aims at developing a heat transfer model for phase change material nanocomposite (PCMNC)-based finned heat sink to study its heat rejection potential. The proposed model is developed in line with the binary alloy formulation for smaller size nanoparticles. The present study gives a more insight into the nanoparticle distribution while the nanocomposite is undergoing phase change. The nanocomposite is placed in the gap between the fins in a finned heat sink where solidification occurs from the top and lateral sides of fins. The proposed numerical model is based on finite volume method. Fully implicit scheme is used to discretize the transient terms in the governing transport equations. Natural convection in the molten nanocomposite is simulated using the semi-implicit-pressure-linked–equations-revised (SIMPLER) algorithm. Nanoparticle transport is coupled with the energy equation via Brownian and thermophoretic diffusion. Enthalpy porosity approach is used to model the phase change of PCMNC. Scheil rule is used to compute the nanoparticle concentration in the mixture consisting of solid and liquid PCMNC. All the finite volume discrete algebraic equations are solved using the line-by-line tridiagonal-matrix-algorithm with multiple sweeping from all possible directions. The proposed numerical model is validated with the existing analytical and numerical models. A comparison in thermal performance is made between the heat sink with homogeneous nanocomposite and with nonhomogeneous nanocomposite. Finally, the effect of spherical nanoparticles and platelet nanoparticles to the solidification behavior is compared.

References

1.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.
2.
Sahoo
,
S. K.
,
Das
,
M. K.
, and
Rath
,
P.
,
2016
, “
Application of TCE-PCM Based Heat Sinks for Cooling of Electronic Components: A Review
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
550
582
.
3.
Nayak
,
K. C.
,
Saha
,
S. K.
,
Srinivasan
,
K.
, and
Dutta
,
P.
,
2006
, “
A Numerical Model for Heat Sink With Phase Change Materials and Thermal Conductivity Enhancers
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1833
1844
.
4.
Shatikian
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2005
, “
Numerical Investigation of a PCM-Based Heat Sink With Internal Fins
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3689
3706
.
5.
Srikanth
,
R.
, and
Balaji
,
C.
,
2017
, “
Experimental Investigation on the Heat Transfer Performance of a PCM Based Pin Fin Heat Sink with Discrete Heating
,”
Int. J. Therm. Sci.
,
111
, pp.
188
203
.
6.
Fok
,
S. C.
,
Shen
,
W.
, and
Tan
,
F. L.
,
2010
, “
Cooling of Portable Hand-Held Electronic Devices Using Phase Change Materials in Finned Heat Sinks
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
109
17
.
7.
Sahoo
,
S. K.
,
Das
,
M. K.
, and
Rath
,
P.
,
2018
, “
Hybrid Cooling System for Electronics Components During Power Surge Operation
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
8
(
3
), pp.
416
426
.
8.
Lafdi
,
K.
, and
Mesalhy
,
O.
,
2008
, “
Merits of Employing Foam Encapsulated Phase Change Materials for Pulsed Power Electronics Cooling Application
,”
ASME J. Electron. Packag.
,
130
(
2
), p.
021004
.
9.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Experimental Investigations on Thermal Performance Enhancement and Effect of Orientation on Porous Matrix Filled PCM Based Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
27
30
.
10.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2005
, “
A Two-Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
995
1004
.
11.
Srivastav
,
P. V. S. S.
,
Baby
,
R.
, and
Balaji
,
C.
,
2014
, “
Numerical Investigation of PCM Based Heat Sinks With Embedded Metal Foam/Crossed Plate Fins
,”
Numer. Heat Transfer Part A
,
66
(
10
), pp.
1131
1153
.
12.
Sabour
,
M.
,
Ghalambaz
,
M.
, and
Chamkha
,
A.
,
2017
, “
Natural Convection of Nanofluids in a Cavity: Criteria for Enhancement of Nanofluids
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
7
), pp.
1504
1534
.
13.
Ghalambaz
,
M.
, and
Sabour
,
M.
,
2016
, “
Natural Convection in a Triangular Cavity Filled With a Nanofluid-Saturated Porous Medium Using Three Heat Equation Model
,”
Can. J. Phys.
,
94
(
6
), pp.
604
615
.
14.
Mehryan
,
S. A. M.
,
Ghalambaz
,
M.
, and
Izadi
,
M.
,
2018
, “
Conjugate Natural Convection of Nanofluids Inside an Enclosure Filled by Three Layers of Solid, Porous Medium and Free Nanofluid Using Buongiorno's and Local Thermal Non-Equilibrium Models
,”
J. Therm. Anal. Calorim.
,
135
(
2
), pp.
1
21
.
15.
Tahmasebi
,
A.
,
Mahdavi
,
M.
, and
Ghalambaz
,
M.
,
2018
, “
Local Thermal Nonequilibrium Conjugate Natural Convection Heat Transfer of Nanofluids in a Cavity Partially Filled With Porous Media Using Buongiorno's Model
,”
Numer. Heat Transfer, Part A: Appl.
,
73
(
4
), pp.
254
276
.
16.
Zargartalebi
,
H.
,
Ghalambaz
,
M.
,
Khanafer
,
K.
, and
Pop
,
I.
,
2017
, “
Unsteady Conjugate Natural Convection in a Porous Cavity Boarded by Two Vertical Finite Thickness Walls
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
218
228
.
17.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2018
, “
Laminar Convective Nanofluid Flow Over a Backward-Facing Step With an Elastic Bottom Wall
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041003
.
18.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2017
, “
Effects of Nanoparticle Shape on Slot-Jet Impingement Cooling of a Corrugated Surface With Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1–8
), p.
021096
.
19.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2019
, “
Corrugated Conductive Partition Effects on MHD Free Convection of CNT-Water Nanofluid in a Cavity
,”
ASME J. Therm. Sci. Eng. Appl.
,
129
, pp.
265
277
.
20.
Ghalambaz
,
M.
,
Doostani
,
A.
,
Chamkha
,
A. J.
, and
Ismael
,
A. M.
,
2017
, “
Melting of Nanoparticles-Enhanced Phase-Change Materials in an Enclosure: Effect of Hybrid Nanoparticles
,”
Int. J. Mech. Sci.
,
134
, pp.
85
97
.
21.
Chamkha
,
A. J.
,
Doostanidezfuli
,
A.
,
Izadpanahi
,
E.
, and
Ghalambaz
,
M.
,
2017
, “
Phase-Change Heat Transfer of Single/Hybrid Nanoparticles-Enhanced Phase-Change Materials Over a Heated Horizontal Cylinder Confined in a Square Cavity
,”
Adv. Powder Technol.
,
28
(
2
), pp.
385
397
.
22.
Ghalambaz
,
M.
,
Doostani
,
A.
,
Izadpanahi
,
E.
, and
Chamkha
,
A. J.
,
2017
, “
Phase-Change Heat Transfer in a Cavity Heated From Below: The Effect of Utilizing Single or Hybrid Nanoparticles as Additives
,”
J. Taiwan Inst. Chem. Eng.
,
72
, pp.
104
115
.
23.
Sharma
,
R. K.
,
Ganesan
,
P.
,
Sahu
,
J. N.
,
Metselaar
,
H. S. C.
, and
Mahlia
,
T. M. I.
,
2014
, “
Numerical Study for Enhancement of Solidification of Phase Change Materials Using Trapezoidal Cavity
,”
Powder Technol.
,
268
, pp.
38
47
.
24.
Sebti
,
S. S.
,
Mastiani
,
M.
,
Mirzaei
,
H.
,
Dadvand
,
A.
,
Kashani
,
S.
, and
Hosseini
,
S. A.
,
2013
, “
Numerical Study of the Melting of Nano-Enhanced Phase Change Material in a Square Cavity
,”
J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.)
,
14
(
5
), pp.
307
316
.
25.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2012
, “
A Theoretical and Experimental Investigation of Unidirectional Freezing of Nanoparticle-Enhanced Phase Change Materials
,”
ASME J. Heat Transfer
,
134
(
9
), p.
092301
.
26.
Nabil
,
M.
, and
Khodadadi
,
J. M.
,
2013
, “
Experimental Determination of Temperature Dependent Thermal Conductivity of Solid Eicosane-Based Nanostructure Enhanced Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
67
, pp.
301
310
.
27.
Doostani
,
A.
,
Ghalambaz
,
M.
, and
Chamkha
,
A. J.
,
2017
, “
MHD Natural Convection Phase-Change Heat Transfer in a Cavity: Analysis of the Magnetic Field Effect
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
7
), pp.
2831
2846
.
28.
Ghalambaz
,
M.
,
Doostanidezfuli
,
A.
,
Zargartalebi
,
H.
, and
Chamkha
,
A. J.
,
2017
, “
MHD Phase Change Heat Transfer in an Inclined Enclosure: Effect of a Magnetic Field and Cavity Inclination
,”
Numer. Heat Transfer, Part A: Appl.
,
71
(
1
), pp.
91
109
.
29.
Colla
,
L.
,
Ercole
,
D.
,
Fedele
,
L.
,
Mancin
,
S.
,
Manca
,
O.
, and
Bobbo
,
S.
,
2017
, “
Nano-Phase Change Materials for Electronics Cooling Applications
,”
ASME J. Heat Transfer
,
139
(
5
), p.
052406
.
30.
Weinstein
,
R. D.
,
Copec
,
T. C.
,
Fleischer
,
A. S.
,
D.Addio
,
E.
, and
Bessel
,
C. A.
,
2008
, “
The Experimental Exploration of Embedding Phase Change Materials With Graphite Nanofibres for Thermal Management of Electronics
,”
ASME J. Heat Transfer
,
130
(
4
), pp.
1
8
.
31.
Chintakrinda
,
K.
,
Weinstein
,
R. D.
, and
Fleischer
,
A. S.
,
2011
, “
A Direct Comparison of Three Different Material Enhancement Methods on Transient Thermal Response of Paraffin Phase Change Material Exposed to High Heat Fluxes
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1639
1647
.
32.
Ryan
,
E.
,
Weinstein
,
R. D.
, and
Fleischer
,
A. S.
,
2012
, “
The Shape Stabilization of Paraffin Phase Change Material to Reduce Graphite Nanofiber Settling During the Phase Change Process
,”
Energy Convers. Manage.
,
57
, pp.
60
67
.
33.
Sahoo
,
S. K.
,
Das
,
M. K.
, and
Rath
,
P.
,
2016
, “
Numerical Study of Cyclic Melting and Solidification of Nano Enhanced Phase Change Material Based Heat Sink in Thermal Management of Electronic Components
,”
ASME
Paper No. MNHMT2016-6499.
34.
Peppin
,
S. S. L.
,
Elliott
,
J. A. W.
, and
Worster
,
M. G.
,
2006
, “
Solidification of Colloidal Suspensions
,”
J. Fluid Mech.
,
554
(
1
), pp.
147
166
.
35.
Stefen
, S.
,
Peppin
,
L.
,
Worster
,
M. G.
, and
Wettlaufer
,
J. S.
,
2007
, “
Morphological Instability in Freezing Colloidal Suspensions
,”
Proc. R. Soc. London A
,
463
(
2079
), pp.
723
733
.
36.
Hasadi
,
Y. M. F. E.
, and
Khodadadi
,
J. M.
,
2015
, “
Numerical Simulation of Solidification of Colloids Inside a Differentially Heated Cavity
,”
ASME J. Heat Transfer
,
137
(
1–10
), p.
072301
.
37.
Hasadi
,
Y. M. F. E.
, and
Khodadadi
,
J. M.
,
2013
, “
Numerical Simulation of the Effect of the Size of Suspensions on the Solidification Process of Nanoparticle-Enhanced Phase Change Materials
,”
ASME J. Heat Transfer
,
135
(
1–11
), p.
052901
.
38.
Akbar
,
N. S.
,
Butt
,
A. W.
, and
Tripathi
,
D.
,
2017
, “
Nanoparticle Shape Effects Due to Unsteady Physiological Transport of Nano Fluids Through a Finite Length Non-Uniform Channel
,”
Results Phys.
,
7
, pp.
2477
2484
.
39.
Arasu
,
A. V.
, and
Mujumdar
,
A. S.
,
2012
, “
Numerical Study on Melting of Paraffin Wax With Al2O3 in a Square Enclosure
,”
Int. Commun. Heat Mass Transfer
,
39
(
1
), pp.
8
16
.
40.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
41.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy–Porosity Technique for Modelling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
,
13
(
3
), pp.
297
318
.
42.
Chakraborty
,
P. R.
, and
Dutta
,
P.
, “
A Generalized Enthalpy Update Scheme for Solidification of Binary Alloy With Solid Phase Movement
,”
Metall. Mater. Trans. B
,
42B
(
6
), pp.
1075
1079
.
43.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publication
,
New York
.
44.
Prakash
,
C.
, and
Voller
,
V.
,
1989
, “
On the Numerical Solution of Continuum Mixture Model Equations Describing Binary Solid-Liquid Phase Change
,”
Numer. Heat Transfer, Part B
,
15
(
2
), pp.
171
189
.
45.
Hasadi
,
Y. M. L.
, and
Khodadadi
,
J. M.
,
2013
, “
One-Dimensional Stefan Problem Formulation for Solidification of Nanostructure Enhanced Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
67
, pp.
202
213
.
You do not currently have access to this content.