Abstract

In this paper, optimization of the location and the geometry of a vortex promoter located above in a finned surface in a channel with eight heat sources is investigated for a Reynolds number of 12,500 < Re < 27,700. Heat transfer rates and the corresponding Nusselt number distributions are studied both experimentally and numerically using different vortex promoter geometries (square, circular, and triangular) in different locations to illustrate the effect of vortex promoter on the fluid flow. Optimization study considered a range of following parameters: blockage ratio of 0.30 < (y/C) < 0.45 and interpromoter distance ratio of 0.2277 < (x/L) < 0.3416. Results show that fins over which rectangular and circular promoters are integrated perform better in enhancing the heat transfer. According to the numerical and experimental results, higher blockage ratios cause significantly higher heat transfer coefficients. According to the observations, as the interpromoter distances increase, shedding gains strength, and more turbulence is created. All vortex promoters enhance heat transfer resulting in lower temperature values on the finned surface for different (y/C) and (x/L) values and Reynolds numbers. The use of promoters enhances the heat transfer, and the decrease in the maximum temperature values is recorded on the finned surface changing between 15% and 27%. The biggest decrease in maximum surface temperature value is 500 K–364 K and observed in circular promoter case with (y/C) = 0.43, (x/L) = 0.3416, and Reynolds numbers of 22,200.

References

1.
Sheikholeslami
,
M.
,
Bandpy
,
M. G.
, and
Ganji
,
D. D.
,
2015
, “
Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices
,”
Renew. Sustain. Energ. Rev.
,
49
, pp.
444
649
.
2.
Oztop
,
H. F.
,
Varol
,
Y.
, and
Alnak
,
D. E.
,
2009
, “
Control of Heat Transfer, and Fluid Using a Triangular Bar in Heated Blocks Located in a Channel
,”
Int. Commun. Heat Mass Transf.
,
36
(
8
), pp.
878
885
.
3.
Ali
,
R. K.
,
2016
, “
Heat Transfer Enhancement of a Heat Source Located in a Wake Zone Using Rectangular Vortex Generators
,”
Appl. Therm. Eng.
,
106
, pp.
1209
1216
.
4.
Ayli
,
E.
,
Bayer
,
O.
, and
Aradag
,
S.
,
2016
, “
Experimental Investigation and CFD Analysis of Rectangular Profile FINS in a Square Channel for Forced Convection Regimes
,”
Int. J. Therm. Sci.
,
109
, pp.
279
290
.
5.
Gomes
,
D. K.
,
2007
, “
Experimental Investigation of air Cooling Systems for Electronic Equipment by Using Vortex Promoters
,” M.Sc. thesis,
Rutgers University
,
NJ
.
6.
Chomdee
,
S.
, and
Kiatsiriroat
,
T.
,
2006
, “
Enhancement of Air Cooling in a Staggered Array of Electronic Modules by Integrating Delta Winglet Vortex Generators
,”
Int. Commun. Heat Mass Transf.
,
33
(
5
), pp.
618
626
.
7.
Beig
,
S. A.
, and
Kowsari
,
M. F.
,
2011
, “
Investigation of Optimal Position of a Vortex Generator in a Blocked Channel for Heat Transfer Enhancement of Electronic Chips
,”
Int. J. Heat Mass Transf.
,
54
(
19–20
), pp.
4317
4324
.
8.
Meis
,
M.
,
Varas
,
F.
,
Velazquez
,
A.
, and
Vega
,
J. M.
,
2010
, “
Heat Transfer Enhancement in Micro-Channels Caused by Vortex Promoters
,”
Int. J. Heat Mass Transf.
,
53
(
1–3
), pp.
29
40
.
9.
Martin
,
E.
, and
Velazquez
,
A.
,
2011
, “
Effect of Span Length, and Temperature on the 3-D Confined Flow Around a Vortex Promoter
,”
Int. J. Heat Fluid Flow
,
32
(
6
), pp.
1173
1185
.
10.
Chatterjee
,
D.
,
Biswas
,
G.
, and
Amiroudine
,
S.
,
2009
, “
Numerical Investigation of Forced Convection Heat Transfer in Unsteady Flow Past a Row of Square Cylinders
,”
Int. J. Heat Fluid Flow
,
30
(
6
), pp.
1114
1128
.
11.
Nakod
,
P. M.
,
Prabhu
,
S. V.
, and
Vedula
,
R. P.
,
2008
, “
Heat Transfer Augmentation Between Impinging Circular Air Jet, and Flat Plate Using Finned Surfaces and Vortex Generators
,”
Exp. Therm. Fluid. Sci.
,
32
(
5
), pp.
1168
1187
.
12.
Ingalagi
,
M. R.
, and
Katti
,
V. V.
,
2016
, “
Flow Characteristics of Air in a Square Duct Using Delta Wing Vortex Generators
,”
Perspect. Sci.
,
8
, pp.
298
300
.
13.
Hossesini
,
M.
,
Ganji
,
D.
, and
Delavar
,
M.
,
2016
, “
Experimental and Numerical Evaluation of Different Vortex Generators on Heat Transfer
,”
Appl. Therm. Eng.
,
108
, pp.
905
915
.
14.
Oneissi
,
M.
,
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
Lemenand
,
T.
,
2016
, “
Novel Design of Delta Winglet Pair Vortex Generator for Heat Transfer Enhancement
,”
Int. J. Therm. Sci.
,
109
, pp.
1
9
.
15.
Colla
,
L.
,
Ercole
,
D.
,
Fedele
,
L.
,
Mancin
,
S.
,
Manca
,
O.
, and
Bobbo
,
S.
,
2017
, “
Nano-Phase Change Materials for Electronics Cooling Applications
,”
ASME J. Heat Transfer
,
139
(
5
), pp.
1
10
.
16.
Mohammadian
,
S. K.
,
Rassoulinejad-Mousavi
,
S. M.
, and
Zhang
,
Y.
,
2015
, “
Thermal Management Improvement of an air-Cooled High-Power Lithium-ion Battery by Embedding Metal Foam
,”
J. Power Sources
,
296
, pp.
305
313
.
17.
Rassoulinejad-Mousavi
,
S. M.
,
Seyf
,
H. R.
, and
Abbasbandy
,
S.
,
2013
, “
Heat Transfer Through a Porous Saturated Channel With Permeable Walls Using Two Equation Energy Model
,”
J. Porous Media
,
16
, pp.
241
254
.
18.
Rassoulinejad-Mousavi
,
S. M.
, and
Abbasbandy
,
S.
,
2011
, “
Analysis of Forced Convection in a Circular Tube Filled With a Darcy-Brinkman-Forchheimer Porous Medium Using Spectral Homotopy Analysis Method
,”
J. Fluids Eng.
,
133
(
10
), pp.
1
27
.
19.
Rassoulinejad-Mousavi
,
S. M.
,
Abbasbandy
,
S.
, and
Alsulami
,
H. A.
,
2014
, “
Analytical Flow Study of a Conducting Maxwell Fluid Through a Porous Saturated Channel at Various Wall Boundary Conditions
,”
Eur. Phys. J. Plus
,
129
(
181
), pp.
1
10
.
20.
Icoz
,
T.
,
2005
, “
Design of air Cooling Systems for Electronic Equipment Using Concurrent Numerical and Experimental Inputs
,” Ph.D. thesis,
Rutgers University
,
NJ
.
21.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
2006
,
Fundamentals of Fluid Mechanics
, 5th ed.,
John Wiley & Sons
,
New York
.
22.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Introduction to Heat Transfer
,
John Wiley & Sons
,
New York
.
23.
Ayli
,
E.
,
Turk
,
C.
, and
Aradag
,
S.
,
2011
, “
The Effects of Shape, and Location of Vortex Promoters on Electronics Cooling for Laminar and Turbulent Flow
,”
Seventh International Conference on Computational Heat and Mass Transfer.
,
24
(
16
), pp.
2427
2498
.
24.
ansys cfx
Users’s Manual v16,
2016
.
25.
Etemoglu
,
A. B.
,
Isman
,
M. K.
,
Pulat
,
E.
, and
Can
,
M.
,
2004
, “
The Analysis of Cooling of Electronic Circuits for Laminar and Turbulent Flow
,”
Mühendis ve Makina
,
45
.
26.
Tan
,
F.
,
Canbolat
,
A. S.
,
Türkan
,
B.
, and
Yüce
,
B. E.
,
2015
, “
Elektronik cihazlarin sogutulmasının farklı türbülans modelleri ve duvar yaklasimlari ile CFD simulasyonu
,” TESKON 2015,
Simülasyon Ve Simülasyon Tabanli Ürün Geliştirme Sempozyumu
,
Turkey
.
You do not currently have access to this content.