Abstract

Oscillatory fouling in condensers using cooling tower water was recognized in 1980s, but it had not yet been theoretically analyzed. Without careful theoretical analysis, it is easy to think that oscillatory fouling phenomenon is generated from experimental uncertainty. The new analysis is to split the fouling rate into a mean variable and a fluctuating variable. The mean variable exhibits an asymptotic behavior, and the fluctuating variable exhibits an oscillatory behavior. A theoretical analysis based on the relationship of continuity is used to present fouling oscillatory behavior along the space and time dimensions simultaneously to provide the intuitive understanding in physical mechanisms driving the phenomenon. A series of long-term cooling tower water fouling tests were conducted: fouling data collected in two copper helically ribbed tubes with the same internal and external diameters and different inside geometric parameters at the same water velocity in condenser in practical cooling tower conditions present oscillatory behavior. The frequencies of the fluctuation are the same for the two tested tube geometries. The spatial and the temporal oscillatory fouling behaviors presented in the experimental results are predicted by the theoretical analysis.

References

1.
Sieder
,
E. N.
,
1934
, “
Application of Fouling Factors in the Design of Heat Exchangers
,”
Heat Transfer Am. Soc. Mech. Eng.
,
1
, pp.
82
85
.
2.
TEMA
,
1941
,
Tubular Exchanger Manufactures Association, Standards of Tubular Exchanger Manufactures Association
,
TEMA
,
New York
.
3.
Kern
,
D. Q.
, and
Seaton
,
R. E.
,
1959
, “
A Theoretical Analysis of Thermal Surface Fouling
,”
Chem. Eng. Prog.
,
4
(
5
), pp.
258
262
.
4.
Somerscales
,
E. F. C.
,
1991
, “
Fouling of Heat Transfer Surfaces: A Historical Review
,”
Heat Transfer Eng.
,
11
(
1
), pp.
19
35
.
5.
Watkinson
,
A. P.
, and
Epstein
,
N.
,
1970
, “
Particulate Fouling of Sensible Heat Exchangers
,”
Proceedings of the Fourth International Heat Transfer Conference
, Paper No. HE 1.6.
6.
Taborek
,
J.
,
Knudsen
,
J. G.
,
Aoki
,
T.
,
Ritter
,
R. B.
, and
Palen
,
J. W.
,
1972
, “
Fouling the Major Unresolved Problem in Heat Transfer, Part I: Fouling Mechanisms, Their Characteristics and Factors Influencing Them
,”
Chem. Eng. Progr.
,
88
(
9–67
), pp.
67
78
.
7.
Bott
,
T. R.
,
1995
,
Fouling of Heat Exchangers
,
Elsevier
,
New York
, pp.
22
27
.
8.
Kim
,
N. H.
, and
Webb
,
R. L.
,
1991
, “
Particulate Fouling of Water in Tubes Having a Two-Dimensional Roughness Geometry
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2727
2738
.
9.
Li
,
W.
, and
Webb
,
R. L.
,
2002
, “
Fouling Characteristics of Internal Helical-Rib Roughness Tubes Using Low-Velocity Cooling Tower Water
,”
Int. J. Heat Mass Transf.
,
45
(
8
), pp.
1685
1691
.
10.
Li
,
W.
,
Fu
,
P.
,
Li
,
H.
,
Li
,
G.
, and
Thors
,
P.
,
2016
, “
Numerical-Theoretical Analysis of Heat Transfer, Pressure Drop, and Fouling in Internal Helically Ribbed Tubes of Different Geometries
,”
Heat Transfer Eng.
,
37
(
3–4
), pp.
279
289
.
11.
Li
,
W.
,
2007
, “
Modeling Liquid-Side Particulate Fouling in Internal Helical-Rib Tubes
,”
Chem. Eng. Sci.
,
62
(
16
), pp.
4204
4213
.
12.
Li
,
W.
,
2003
, “
The Heat Transfer Performances of Internal Helical-Rib Roughness Tubes Under Fouling Conditions: Practical Cooling Tower Water Fouling and Accelerated Particulate Fouling
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
746
748
.
13.
Li
,
W.
,
2003
, “
The Internal Surface Area Basis, a key Issue of Modeling Fouling in Enhanced Heat Transfer Tubes
,”
Int. J. Heat Mass Transfer
,
46
(
22
), pp.
4345
4349
.
14.
Li
,
W.
, and
Li
,
G. Q.
,
2010
, “
Modeling Cooling Tower Fouling in Helical-Rib Tubes Based on Von-Karman Analogy
,”
Int. J. Heat Mass Transf.
,
53
(
13–14
), pp.
2715
2721
.
15.
Shen
,
C.
,
Cirone
,
C.
,
Jacobi
,
A. M.
, and
Wang
,
X.
,
2015
, “
Fouling of Enhanced Tubes for Condensers Used in Cooling Tower Systems: A Literature Review
,”
Appl. Therm. Eng.
,
79
, pp.
74
87
.
16.
Zhang
,
G.
,
Li
,
G.
,
Li
,
W.
,
Zhang
,
Z.
,
Leng
,
X.
, and
Tian
,
M.-C.
,
2013
, “
Particulate Fouling and Composite Fouling Assessment in Corrugated Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
60
, pp.
263
273
.
17.
Li
,
W.
,
Li
,
H.
,
Li
,
G.
, and
Yao
,
S. C.
,
2013
, “
Numerical and Experimental Analysis of Composite Fouling in Corrugated Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
63
, pp.
351
360
.
18.
Li
,
W.
,
Zhou
,
K.
,
Li
,
G.
,
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2016
, “
Investigation of CaCO3 Fouling in Plate Heat Exchangers
,”
Heat Mass Transfer
,
52
(
11
), pp.
2401
2414
.
19.
Epstein
,
N.
,
1997
, “
Elements of Particle Deposition Onto Nonporous Solid Surfaces Parallel to Suspension Flow
,”
Exp. Thermal Fluid Sci.
,
14
(
4
), pp.
323
335
.
20.
Oliveira
,
R.
,
1997
, “
Understanding Adhesion: A Means for Preventing Fouling
,”
Exp. Thermal Fluid Sci.
,
14
(
4
), pp.
317
322
.
21.
Li
,
W.
, and
Webb
,
R. L.
,
2000
, “
Fouling in Enhanced Tubes Using Cooling Tower Water: Part II: Combined Particulate and Precipitation Fouling
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3579
3588
.
22.
L.
Cremaschi
,
J. D.
Spitler
,
X.
Wu
,
E.
Lim
,
A.
Barve
, and
A.
Ramesh
,
2017
, “
Waterside Fouling Performance of Brazed-Plate Type Condensers in Cooling, Tower Applications
,”
ASHRAE Technical Committee: TC 8.5 Liquid-to-Refrigerant Heat Transfer Equipment
, ASHRAE Paper No. ASHRAE-D-RP-1345.
23.
Somerscales
,
E. F. C.
,
1988
, “Corrosion Fouling: Liquid Side,”
Fouling Science and Technology
,
L. F.
Melo
,
T. R.
Bott
, and
C. A.
Bernardo
, eds.,
Kluwer Academic Publishers
,
Boston
, pp.
621
628
.
24.
Grillot
,
J. M.
,
1997
, “
Fouling of a Cylindrical Probe and a Finned Tube Bundle in a Diesel Exhaust Environment
,”
Exp. Thermal Fluid Sci.
,
14
(
4
), pp.
442
457
.
25.
Newson
,
I. H.
,
Bott
,
T. R.
, and
Hussain
,
C. I.
,
1983
, “
Studies of Magnetite Deposition From a Flowing Suspension
,”
Chem. Eng. Commun.
,
39
(
5–6
), pp.
3
23
.
You do not currently have access to this content.