Abstract

This paper presents numerical study on heat transfer enhancement due to the combination of rectangular winglet pair with V-dimples in an array-type arrangement. Array of rectangular winglet pairs results in heat transfer enhancement, however, at a cost of significant pressure drop, resulting in reduced thermal-hydraulic performance (THP). On the other hand, dimples are associated with lower heat transfer enhancement levels at relatively lower pumping power penalty. To this end, a combination of rectangular winglet pair and V-shaped dimples has been studied in this paper, where the arrangements were intended to achieve enhanced thermal-hydraulic performance. Three different configurations, namely, rectangular winglet pair, rectangular winglet pair with one V-dimple between two consecutive winglets, and rectangular winglet pair with two V-dimples packed in a pitch, are studied here. The variation of heat transfer enhancement, pressure drop gain, and THP with respect to winglet-to-winglet (S) spacing variation for rectangular winglet pair and rectangular winglet pair with one V-dimple configuration is presented at a Reynolds number of 25,000. The THP of the rectangular winglet pair configuration decreases up to S/H equal to 2.5 and then increases (H: channel height). For rectangular winglet pair with one V-dimple, three values of winglet-to-dimple (P) spacings are analyzed. For fixed S/H, the highest P/H configuration provided highest heat transfer enhancement and THP. Among the three configurations studied, rectangular winglet pair with two V-dimples resulted in the highest thermal-hydraulic performance.

References

1.
Fiebig
,
M.
,
Kallweit
,
P.
,
Mitra
,
N.
, and
Tiggelbeck
,
S.
,
1991
, “
Heat Transfer Enhancement and Drag by Longitudinal Vortex Generators in Channel Flow
,”
Exp. Therm. Fluid Sci.
,
4
(
1
), pp.
103
114
.
2.
Eibeck
,
P. A.
, and
Eaton
,
J. K.
,
1987
, “
Heat Transfer Effects of a Longitudinal Vortex Embedded in a Turbulent Boundary Layer
,”
ASME J. Heat Transfer
,
109
(
1
), pp.
16
24
.
3.
Gentry
,
M. C.
, and
Jacobi
,
A. M.
,
1997
, “
Heat Transfer Enhancement by Delta-Wing Vortex Generators on a Flat Plate: Vortex Interactions With the Boundary Layer
,”
Exp. Therm. Fluid Sci.
,
14
(
3
), pp.
231
242
.
4.
Fiebig
,
M.
,
1998
, “
Vortices, Generators and Heat Transfer
,”
Chem. Eng. Res. Des.
,
76
(
2
), pp.
108
123
.
5.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2008
, “
Numerical Study on Laminar Convection Heat Transfer in a Channel With Longitudinal Vortex Generator. Part B: Parametric Study of Major Influence Factors
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3683
3692
.
6.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2008
, “
Numerical Study on Laminar Convection Heat Transfer in a Rectangular Channel With Longitudinal Vortex Generator. Part A: Verification of Field Synergy Principle
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1179
1191
.
7.
Bjerg
,
A.
,
Christoffersen
,
K.
,
Sørensen
,
H.
, and
Hærvig
,
J.
,
2019
, “
Flow Structures and Heat Transfer in Repeating Arrangements of Staggered Rectangular Winglet Pairs by Large Eddy Simulations: Effect of Winglet Height and Longitudinal Pitch Distance
,”
Int. J. Heat Mass Transfer
,
131
, pp.
654
663
.
8.
Tiggelbeck
,
S.
,
Mitra
,
N.
, and
Fiebig
,
M.
,
1992
, “
Flow Structure and Heat Transfer in a Channel With Multiple Longitudinal Vortex Generators
,”
Exp. Therm. Fluid Sci.
,
5
(
4
), pp.
425
436
.
9.
Zhu
,
J. X.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1993
, “
Effects of Longitudinal Vortex Generators on Heat Transfer and Flow Loss in Turbulent Channel Flows
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2339
2347
.
10.
Zhu
,
J. X.
,
Fiebig
,
M.
, and
Mitra
,
N. K.
,
1995
, “
Numerical Investigation of Turbulent Flows and Heat Transfer in a Rib-Roughened Channel With Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
38
(
3
), pp.
495
501
.
11.
Kotcioglu
,
İ.
,
Ayhan
,
T.
,
Olgun
,
H.
, and
Ayhan
,
B.
,
1998
, “
Heat Transfer and Flow Structure in a Rectangular Channel With Wing-Type Vortex Generator
,”
Turkish J. Eng. Environ. Sci.
,
22
(
3
), pp.
185
196
.
12.
Tian
,
L. T.
,
He
,
Y. L.
,
Lei
,
Y. G.
, and
Tao
,
W. Q.
,
2009
, “
Numerical Study of Fluid Flow and Heat Transfer in a Flat-Plate Channel With Longitudinal Vortex Generators by Applying Field Synergy Principle Analysis
,”
Int. Commun. Heat Mass Transfer
,
36
(
2
), pp.
111
120
.
13.
Awais
,
M.
, and
Bhuiyan
,
A. A.
,
2018
, “
Heat Transfer Enhancement Using Different Types of Vortex Generators (VGs): A Review on Experimental and Numerical Activities
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
524
545
.
14.
Zhou
,
G.
, and
Feng
,
Z.
,
2014
, “
Experimental Investigations of Heat Transfer Enhancement by Plane and Curved Winglet Type Vortex Generators With Punched Holes
,”
Int. J. Therm. Sci.
,
78
, pp.
26
35
.
15.
Min
,
C.
,
Qi
,
C.
,
Kong
,
X.
, and
Dong
,
J.
,
2010
, “
Experimental Study of Rectangular Channel With Modified Rectangular Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3023
3029
.
16.
Promvonge
,
P.
,
Suwannapan
,
S.
,
Pimsarn
,
M.
, and
Thianpong
,
C.
,
2014
, “
Experimental Study on Heat Transfer in Square Duct With Combined Twisted-Tape and Winglet Vortex Generators
,”
Int. Commun. Heat Mass Transfer
,
59
, pp.
158
165
.
17.
Luo
,
L.
,
Wen
,
F.
,
Wang
,
L.
,
Sundén
,
B.
, and
Wang
,
S.
,
2017
, “
On the Solar Receiver Thermal Enhancement by Using the Dimple Combined With Delta Winglet Vortex Generator
,”
Appl. Therm. Eng.
,
111
, pp.
586
598
.
18.
Chompookham
,
T.
,
Thianpong
,
C.
,
Kwankaomeng
,
S.
, and
Promvonge
,
P.
,
2010
, “
Heat Transfer Augmentation in a Wedge-Ribbed Channel Using Winglet Vortex Generators
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
163
169
.
19.
Depaiwa
,
N.
,
Chompookham
,
T.
, and
Promvonge
,
P.
,
2010
, “
Thermal Enhancement in a Solar Air Heater Channel Using Rectangular Winglet Vortex Generators
,”
Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD)
,
Chiang Mai, Thailand
,
June 2–4
, IEEE, pp.
1
7
.
20.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmmod
,
G. I.
, and
Hill
,
M. L.
,
2001
, “
Flow Structure Due to Dimple Depressions on a Channel Surface
,”
Phys. Fluids
,
13
(
11
), pp.
3442
3451
.
21.
Ligrani
,
P. M.
,
Mahmood
,
G. I.
,
Harrison
,
J. L.
,
Clayton
,
C. M.
, and
Nelson
,
D. L.
,
2001
, “
Flow Structure and Local Nusselt Number Variations in a Channel With Dimples and Protrusions on Opposite Walls
,”
Int. J. Heat Mass Transfer
,
44
(
23
), pp.
4413
4425
.
22.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.
23.
Mahmood
,
G. I.
,
Sabbagh
,
M. Z.
, and
Ligrani
,
P. M.
,
2001
, “
Heat Transfer in a Channel With Dimples and Protrusions on Opposite Walls
,”
J. Thermophys. Heat Transfer
,
15
(
3
), pp.
275
283
.
24.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1997
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
June 2–5
,
American Society of Mechanical Engineers
, p.
V003T09A080
.
25.
Singh
,
P.
, and
Ekkad
,
S. V.
,
2018
, “
Detailed Heat Transfer Measurements of Jet Impingement on Dimpled Target Surface Under Rotation
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
3
), p.
031006
.
26.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1996
, “
Heat Transfer Inside and Downstream of Cavities Using Transient Liquid Crystal Method
,”
J. Thermophys. Heat Transfer
,
10
(
3
), pp.
511
516
.
27.
Moon
,
H. K.
,
O’connell
,
T.
, and
Glezer
,
B.
,
1999
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
,
Indianapolis, IN
,
June 7–10
,
American Society of Mechanical Engineers
, p.
V003T01A043
.
28.
Turnow
,
J.
,
Kornev
,
N.
,
Zhdanov
,
V.
, and
Hassel
,
E.
,
2012
, “
Flow Structures and Heat Transfer on Dimples in a Staggered Arrangement
,”
Int. J. Heat Fluid Flow
,
35
, pp.
168
175
.
29.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
,
2005
, “
Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors
,”
ASME J. Heat Transfer
,
127
(
8
), pp.
839
847
.
30.
Xie
,
G.
,
Liu
,
J.
,
Ligrani
,
P. M.
, and
Zhang
,
W.
,
2013
, “
Numerical Predictions of Heat Transfer and Flow Structure in a Square Cross-Section Channel With Various Non-Spherical Indentation Dimples
,”
Numer. Heat Transfer A: Appl.
,
64
(
3
), pp.
187
215
.
31.
Liu
,
J.
,
Song
,
Y.
,
Xie
,
G.
, and
Sunden
,
B.
,
2015
, “
Numerical Modeling Flow and Heat Transfer in Dimpled Cooling Channels With Secondary Hemispherical Protrusions
,”
Energy
,
79
, pp.
1
19
.
32.
Xie
,
Y.
,
Qu
,
H.
, and
Zhang
,
D.
,
2015
, “
Numerical Investigation of Flow and Heat Transfer in Rectangular Channel With Teardrop Dimple/Protrusion
,”
Int. J. Heat Mass Transfer
,
84
, pp.
486
496
.
33.
Rao
,
Y.
,
Li
,
B.
, and
Feng
,
Y.
,
2015
, “
Heat Transfer of Turbulent Flow Over Surfaces With Spherical Dimples and Teardrop Dimples
,”
Exp. Therm. Fluid. Sci.
,
61
, pp.
201
209
.
34.
Rao
,
Y.
,
Feng
,
Y.
,
Li
,
B.
, and
Weigand
,
B.
,
2015
, “
Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels With Dimples of Different Shapes
,”
ASME J. Heat Transfer
,
137
(
3
), p.
031901
.
35.
Moon
,
S. W.
, and
Lau
,
S. C.
,
2002
, “
Turbulent Heat Transfer Measurements on a Wall With Concave and Cylindrical Dimples in a Square Channel
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
,
June 3–6
,
American Society of Mechanical Engineers
, pp.
459
467
.
36.
Xie
,
G.
, and
Sundén
,
B.
,
2010
, “
Numerical Predictions of Augmented Heat Transfer of an Internal Blade Tip-Wall by Hemispherical Dimples
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5639
5650
.
37.
Xie
,
G.
,
Sundén
,
B.
, and
Wang
,
Q.
,
2011
, “
Predictions of Enhanced Heat Transfer of an Internal Blade Tip-Wall With Hemispherical Dimples or Protrusions
,”
ASME J. Turbomach.
,
133
(
4
), p.
041005
.
38.
Xie
,
G.
,
Sundén
,
B.
, and
Zhang
,
W.
,
2011
, “
Comparisons of Pins/Dimples/Protrusions Cooling Concepts for a Turbine Blade Tip-Wall at High Reynolds Numbers
,”
ASME J. Heat Transfer
,
133
(
6
), p.
061902
.
39.
Singh
,
P.
,
Pandit
,
J.
, and
Ekkad
,
S. V.
,
2017
, “
Characterization of Heat Transfer Enhancement and Frictional Losses in a Two-Pass Square Duct Featuring Unique Combinations of Rib Turbulators and Cylindrical Dimples
,”
Int. J. Heat Mass Transfer
,
106
, pp.
629
647
.
40.
Singh
,
P.
, and
Ekkad
,
S.
,
2017
, “
Experimental Study of Heat Transfer Augmentation in a Two-Pass Channel Featuring V-Shaped Ribs and Cylindrical Dimples
,”
Appl. Therm. Eng.
,
116
, pp.
205
216
.
41.
Rao
,
Y.
,
Wan
,
C.
, and
Xu
,
Y.
,
2012
, “
An Experimental Study of Pressure Loss and Heat Transfer in the Pin Fin-Dimple Channels With Various Dimple Depths
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6723
6733
.
42.
Rao
,
Y.
,
Xu
,
Y.
, and
Wan
,
C.
,
2012
, “
An Experimental and Numerical Study of Flow and Heat Transfer in Channels With Pin Fin-Dimple and Pin Fin Arrays
,”
Exp. Therm. Fluid. Sci.
,
38
, pp.
237
247
.
43.
Rao
,
Y.
,
Xu
,
Y.
, and
Wan
,
C.
,
2012
, “
A Numerical Study of the Flow and Heat Transfer in the Pin Fin-Dimple Channels With Various Dimple Depths
,”
ASME J. Heat Transfer
,
134
(
7
), p.
071902
.
44.
Jordan
,
C. N.
, and
Wright
,
L. M.
,
2011
, “
Heat Transfer Enhancement in a Rectangular (AR = 3:1) Channel With V-Shaped Dimples
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
,
Vancouver, British Columbia, Canada
,
June 6–10
,
American Society of Mechanical Engineers
, pp.
1505
1516
.
45.
Ranaware
,
M. A. G.
, and
Bhosale
,
M. S.
,
2016
, “
A Study of Heat Transfer Enhancement Using V Shaped Dimples on a Flat Plate With Experimentation & CFD
,”
GRD J. Global Res. Dev. J. Eng.
,
1
(
4
), pp.
104
110
.
46.
Naik
,
H.
,
Harikrishnan
,
S.
, and
Tiwari
,
S.
,
2018
, “
Numerical Investigations on Heat Transfer Characteristics of Curved Rectangular Winglet Placed in a Channel
,”
Int. J. Therm. Sci.
,
129
, pp.
489
503
.
47.
Zhou
,
G.
, and
Ye
,
Q.
,
2012
, “
Experimental Investigations of Thermal and Flow Characteristics of Curved Trapezoidal Winglet Type Vortex Generators
,”
Appl. Therm. Eng.
,
37
, pp.
241
248
.
48.
Saha
,
P.
,
Biswas
,
G.
, and
Sarkar
,
S.
,
2014
, “
Comparison of Winglet-Type Vortex Generators Periodically Deployed in a Plate-Fin Heat Exchanger—A Synergy Based Analysis
,”
Int. J. Heat Mass Transfer
,
74
, pp.
292
305
.
You do not currently have access to this content.