Abstract

Climatic chambers are of great importance in research and development to conduct tests of components in closed environmentally controlled conditions. The growing demand from the industry to fulfill stricter international standards creates the necessity to ensure that the thermofluidic behavior of climatic chambers guarantees high-quality consistency in their interior domain. At present, scientific research on climatic chambers available in the literature is scarce and is mostly based on lumped modeling, hence not addressing the heterogeneities that arise in the interior of the chamber. In this work, an in-depth 3D model of the velocity and temperature fields that develops in the interior of climatic chambers was developed in computer fluid dynamics (CFD) and validated with the experimental data from a new prototype. The key objective of this research was to establish a validated framework for model-based design optimization of climatic chambers. The proposed model showed good agreement with the experimental data with a difference of 0.6 m/s and 9.65 °C in the velocity and temperature fields, respectively, thus validating its applicability to perform model-based design optimization of climatic chambers.

References

1.
Liang
,
Y. Y.
,
Hu
,
J. C.
,
Chen
,
J. P.
,
Shen
,
Y. G.
, and
Du
,
J.
,
2014
, “
A Transient Thermal Model for Full-Size Vehicle Climate Chamber
,”
Energy Build.
,
85
, pp.
256
264
.
2.
Dostál
,
J.
, and
Ferkl
,
L.
,
2014
, “
Model Predictive Control of Climatic Chamber With On-Off Actuators
,”
IFAC Proc.
,
47
(
3
), pp.
4423
4428
.
3.
García-Contreras
,
R.
,
Gómez
,
A.
,
Fernández-Yáñez
,
P.
, and
Armas
,
O.
,
2018
, “
Estimation of Thermal Loads in a Climatic Chamber for Vehicle Testing
,”
Transp. Res. D Transp. Environ.
,
65
, pp.
761
771
.
4.
Mahfouz
,
A.
,
Abdelmaksoud
,
W.
, and
Khalil
,
E. E.
,
2017
, “
Heat Transfer and Fluid Flow Characteristics in a Heat Exchanger Tube Fitted With Inserts
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
3
), p.
031012
.
5.
Marale
,
S.
,
Chiranjeevi
,
C.
,
Srinivas
,
T.
, and
ThundilKaruppa Raj
,
R.
,
2016
, “
Experimental and Computational Fluid Dynamics Studies on Dehumidifier in a Combined Cooling and Desalination Plant
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011007
.
6.
Al-Hasnawi
,
A. G. T.
,
Refaey
,
H.
,
Redemann
,
T.
,
Attalla
,
D. M.
, and
Specht
,
E.
,
2017
, “
CFD Simulation of Flow Mixing in Tunnel Kilns by Air Side Injection
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
3
), p.
031007
.
7.
Aly
,
W. I. A.
,
2014
, “
Computational Fluid Dynamics and Optimization of Flow and Heat Transfer in Coiled Tube-in-Tube Heat Exchangers Under Turbulent Flow Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
3
), p.
031001
.
8.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2012
,
Computational Methods for Fluid Dynamics
,
Springer Science & Business Media
,
New York
.
9.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
,
Harlow, UK
.
10.
Anderson
,
J. D.
, and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
, Vol.
206
,
Springer
,
New York
.
11.
Chung
,
T. J.
,
2010
,
Computational Fluid Dynamics
,
Cambridge University Press
.,
Cambridge, UK
.
12.
Maldague
,
X.
,
2001
,
Theory and Practice of Infrared Technology for Nondestructive Testing
,
Wiley-Interscience
,
New York
.
13.
Lahiri
,
B. B.
,
Bagavathiappan
,
S.
,
Jayakumar
,
T.
, and
Philip
,
J.
,
2012
, “
Medical Applications of Infrared Thermography: A Review
,”
Infrared Phys. Technol.
,
55
(
4
), pp.
221
235
.
14.
Meola
,
C.
,
Carlomagno
,
G. M.
,
Squillace
,
A.
, and
Vitiello
,
A.
,
2006
, “
Non-Destructive Evaluation of Aerospace Materials With Lock-in Thermography
,”
Eng. Fail Anal.
,
13
(
3
), pp.
380
388
.
15.
Balaras
,
C. A.
, and
Argiriou
,
A. A.
,
2002
, “
Infrared Thermography for Building Diagnostics
,”
Energy Build.
,
34
(
2
), pp.
171
183
.
16.
Zou
,
H.
, and
Huang
,
F.
,
2015
, “
A Novel Intelligent Fault Diagnosis Method for Electrical Equipment Using Infrared Thermography
,”
Infrared Phys. Technol.
,
73
, pp.
29
35
.
17.
Peric
,
M.
, and
Ferguson
,
S.
,
2005
,
The Advantage of Polyhedral Meshes
,
CD Adapco
.
18.
Tu
,
J.
,
Yeoh
,
G. H.
, and
Liu
,
C.
,
2012
,
Computational Fluid Dynamics: A Practical Approach
,
Butterworth-Heinemann
,
Oxford, UK
.
19.
Karypis
,
G.
, and
Kumar
,
V.
,
1998
, “
A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices
,”
Department of Computer Science and Engineering, Army HPC Research Center, University of Minnesota
,
Minneapolis, MN
.
20.
Karypis
,
G.
,
METIS
, and
ParMETIS
,
2011
,
Encyclopedia of Parallel Computing
,
Springer
,
New York
, pp.
1117
1124
.
21.
Sabersky
,
R. H.
,
Acosta
,
A. J.
, and
Hauptmann
,
E.G.
,
1971
,
Fluid Flow: A First Course in Fluid Mechanics
, Vol.
299
,
Macmillan
,
New York
.
22.
Çengel
,
Y. A.
,
2010
,
Fluid Mechanics
,
Tata McGraw-Hill Education
,
New Delhi
.
23.
Durbin
,
P. A.
, and
Reif
,
B. A.
,
2010
, “Reynolds Averaged Navier–Stokes Equations,”
Statistical Theory and Modeling for Turbulent Flows
, 2nd ed.,
Wiley
,
New York
, pp.
45
56
.
24.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transf.
,
4
, pp.
625
632
.
25.
Menter
,
F. R.
,
2011
, “
Turbulence Modeling for Engineering Flows
,”
ANSYS Inc.
, Technical Paper, pp.
1
25
.
26.
Bergman
,
T. L.
, and
Incropera
,
F. P.
,
2017
,
Fundamentals of Heat and Mass Transfer
, 8th ed.,
John Wiley & Sons
,
New York
.
27.
Lloyd
,
J. R.
, and
Moran
,
W. R.
,
1974
, “
Natural Convection Adjacent to Horizontal Surface of Various Planforms
,”
ASME J. Heat Transf.
,
96
(
4
), pp.
443
447
.
28.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transf.
,
18
(
11
), pp.
1323
1329
.
29.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.
30.
Keenan
,
J. H.
,
Chao
,
J.
, and
Kaye
,
J.
,
1980
,
Gas Tables: Thermodynamic Properties of Air Products of Combustion and Component Gases, Compressible Flow Functions
, 2nd ed.,
John Wiley & Sons
,
New York
.
31.
Touloukian
,
Y. S.
,
1970
,
Thermophysical Properties of Matter: The TPRC Data Series; A Comprehensive Compilation of Data
,
IFI/Plenum, New York
.
32.
Abdou
,
A. A.
, and
Budaiwi
,
I. M.
,
2005
, “
Comparison of Thermal Conductivity Measurements of Building Insulation Materials Under Various Operating Temperatures
,”
J. Build Phys.
,
29
(
2
), pp.
171
184
.
33.
Avdelidis
,
N. P.
,
Moropoulou
,
A.
,
Abdou
,
B. A. A.
, and
Budaiwi
,
I. M.
,
2003
, “
Emissivity Considerations in Building Thermography
,”
Energy Build.
,
35
(
7
), pp.
663
667
.
You do not currently have access to this content.