Abstract

Currently, ohmic heating is a method with a wide potential as an alternative thermal process in the industry. However, the success of this method depends on the rate of the generated heat by the right material’s selection and its geometry. Due to its complexity, the heating systems are usually modeled by computational fluid dynamics (CFD) or finite element method (FEM). However, in this paper, an alternative model representation was used, and this model does not consider the temperature gradients and uses thermal resistance and capacitance as steady-state and transient analog parameters. The parameters are calculated using matlab considering the geometry, as well as the electrical and thermal properties of the material to heat. The proposed circuit is solved by applying the Laplace transform. Finally, the temperature performance of the model and the experimental system are compared with noncontrolled and controlled experiments.

References

1.
Peng
,
Y.-C.
,
Jin
,
H.-J.
,
Liu
,
J.-H.
, and
Li
,
G.-L.
,
2012
, “
Influence of Cooling Rate on the Microstructure and Properties of a New Wear Resistant Carbidic Austempered Ductile Iron (cadi)
,”
Mater. Charact.
,
72
, pp.
53
58
.
2.
Deak
,
T.
, and
Lelieveld
,
Y. M.
,
2014
, “Chapter 17—Thermal Treatment,”
Food Safety Management: A Practical Guide for the Food Industry
,
Academic Press
,
San Diego, CA
, pp.
423
442
.
3.
Knirsch
,
M. C.
,
Alves dos Santos
,
C.
,
Martins de Oliveira Soares Vicente
,
A. A.
, and
Vessoni Penna
,
T. C.
,
2010
, “
Ohmic Heating—A Review
,”
Trends Food. Sci. Technol.
,
21
(
9
), pp.
436
441
.
4.
Sakr
,
M.
, and
Liu
,
S.
,
2014
, “
A Comprehensive Review on Applications of Ohmic Heating (OH)
,”
Renewable Sustainable Energy. Rev.
,
39
, pp.
262
269
.
5.
Fabrègue
,
D.
,
Mouawad
,
B.
, and
Hutchinson
,
C. R.
,
2014
, “
Enhanced Recovery and Recrystallization of Metals Due to An Applied Current
,”
Scr. Mater.
,
92
(
92
), pp.
3
6
.
6.
Kim
,
H. Y.
,
Park
,
J. K.
, and
Lee
,
M.-G.
,
2014
, “
Phase Transformation-Based Finite Element Modeling to Predict Strength and Deformation of Press-Hardened Tubular Automotive Part
,”
Int. J. Adv. Manuf. Technol.
,
70
(
9
), pp.
1787
1801
.
7.
Sarkis
,
J. R.
,
Mercali
,
G. D.
,
Tessaro
,
I. C.
, and
Marczak
,
L. D. F.
,
2013
, “
Evaluation of Key Parameters During Construction and Operation of An Ohmic Heating Apparatus
,”
Innov. Food Sci. Emerg. Technol.
,
18
, pp.
145
154
.
8.
Varghese
,
K. S.
,
Pandey
,
M. C.
,
Radhakrishna
,
K.
, and
Bawa
,
A. S.
,
2012
, “
Technology, Applications and Modelling of Ohmic Heating: A Review
,”
J. Food Sci. Technol.
,
51
(
10
), pp.
2304
2317
.
9.
Feng
,
K.
,
Ying
,
Z.
, and
Tong
,
X.
,
2015
, “
Radial Thermal Circuit Model for Overhead Conductors Based on Parameter Identification Under Natural Convection Condition
,”
2015 IEEE Power & Energy Society General Meeting
,
Denver, CO
,
July 26–30
, pp.
0
4
.
10.
Chen
,
Q.
,
Fu
,
R.-H.
, and
Xu
,
Y.-C.
,
2015
, “
Electrical Circuit Analogy for Heat Transfer Analysis and Optimization in Heat Exchanger Networks
,”
Appl. Energy
,
139
, pp.
81
92
.
11.
Zhao
,
S. Y.
, and
Chen
,
Q.
,
2016
, “
A Thermal Circuit Method for Analysis and Optimization of Heat Exchangers With Consideration of Fluid Property Variation
,”
Int. J. Heat Mass Transf.
,
99
, pp.
209
218
.
12.
Chen
,
Q.
,
Hao
,
J. H.
, and
Zhao
,
T.
,
2017
, “
An Alternative Energy Flow Model for Analysis and Optimization of Heat Transfer Systems
,”
Int. J. Heat Mass Transf.
,
108
, pp.
712
720
.
13.
Preissler
,
S.
,
Goncalves
,
A. L.
, and
Fernandes
,
W. R.
,
2016
, “
A Framework for Multi-Zone Building Thermal-Electrical Representation
,”
2016 12th International Conference on Intelligent Environments (IE)
,
London, UK
,
Sept. 14–16
, pp.
167
170
.
14.
Herrejón-Escutia
,
M.
,
Solorio-Díaz
,
G.
,
Vergara-Hernández
,
H.
,
López-Martínez
,
E.
,
Chávez-Campos
,
G.
, and
Vázquez-Gómez
,
O.
,
2017
, “
Electric-Thermo-Mechanical Analysis of Joule Heating in Dilatometric Specimens
,”
Stroj. Vestnik/J. Mech. Eng.
,
63
(
9
), pp.
537
547
.
15.
Chávez-Campos
,
N. P.
,
Chávez-Campos
,
G. M.
, and
SalazarTorres
,
J. A.
,
2015
, “
Fast Response Temperature Model Based on Thermal Data for Joule Heating Process Using Exposed Joint Thermocouple Method
,”
2015 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)
,
Ixtapa, Mexico
,
Nov. 4–6
, pp.
1
4
.
16.
Preissler
,
S.
,
2016
, “
A Framework for Thermal Parameter Identification in a Smart Buildings Context
,” 2016 IEEE International Smart Cities Conference
(ISC2)
, pp.
8
11
.
17.
Glotic
,
A.
,
2016
, “
Identification of Thermal Parameters for Transformer FEM Model by Differential Evolution Optimization Algorithm
,”
2016 International Conference Multidisciplinary Engineering Design Optimization (MEDO)
, pp.
1
6
.
18.
Jambunathan
,
K.
,
Hartle
,
S. L.
,
Ashforth-Frost
,
S.
, and
Fontama
,
V. N.
,
1996
, “
Evaluating Convective Heat Transfer Coefficients Using Neural Networks
,”
Int. J. Heat. Mass. Transfer
,
39
(
11
), pp.
2329
2332
.
You do not currently have access to this content.