Abstract

In this paper, we investigate the design-evolution of an embedded pipe based on the constructal theory to obtain the best design that cools a square plate subjected to a constant heat flux boundary condition. The water, ionic liquids (ILs), and nano-enhanced ionic liquids (NEILs, i.e., [C4mim][NTf2] + Al2O3 and [C4mpyrr][NTf2] + Al2O3) have been used as the coolants. Several designs (Case 1 to Case 11) have been tested to quantify the non-dimensional temperature of the heated substrate by implementing the finite volume method of ansys fluent. The three-dimensional continuity, momentum, and energy equations have been solved iteratively in the fluid region by incorporating SIMPLE algorithm with appropriate boundary conditions; while the conduction equation is solved in the solid region. Among all the considered designs, it has been found that Case 3 provides a better cooling effect for the heated substrate. For all of the considered configurations/designs, it is also found that the non-dimensional temperature decreases with the length of the morphing pipe. NEILs exhibit a better cooling effect of the substrate when compared with the ILs and water. The present numerical methodology is also validated with the previous literature.

References

1.
Bejan
,
A.
,
2000
,
Shape and Structure From Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.
2.
Bejan
,
A.
,
1996
, “
Street Network Theory of Organization in Nature
,”
J. Adv. Transp.
,
30
(
2
), pp.
85
107
.
3.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
John Wiley & Sons
,
Hoboken, NJ.
4.
Bejan
,
A.
,
2017
, “
Evolution in Thermodynamics
,”
Appl. Phys. Rev.
,
4
(
1
), pp.
11305
11319
.
5.
Bejan
,
A.
,
2015
, “
Constructal Law: Optimization as Design Evolution
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061003
.
6.
Bejan
,
A.
, and
Errera
,
M. R.
,
2016
, “
Complexity, Organization, Evolution and Constructal law
,”
J. Appl. Phys.
,
119
(
7
), pp.
74901
74908
.
7.
Bejan
,
A.
,
2016
, “
Rolling Stones and Turbulent Eddies: Why the Bigger Live Longer and Travel Farther
,”
Sci. Rep.
,
6
(
1
), pp.
1
4
.
8.
Narouzi
,
E.
,
Mehrgoo
,
M.
, and
Amidpour
,
M.
,
2012
, “
Geometric and Thermodynamic Optimization of Heat Recovery Steam Generator: A Constructal Design
,”
ASME J. Heat Transfer
,
134
(
11
), p.
111801
.
9.
Narouzi
,
E.
, and
Amidpour
,
M.
,
2012
, “
Optimal Thermodynamic and Economic Volume of a Heat Recovery Steam Generator by Constructal Design
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1286
1292
.
10.
Kim
,
Y. S.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2015
, “
Steam Generator Structure: Continuous Model and Constructal Design
,”
Int. J. Energy Res.
,
35
(
4
), pp.
336
345
.
11.
Kim
,
Y. S.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2009
, “
Constructal Steam Generator Architecture
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2362
2369
.
12.
Silva
,
A. K. d.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2004
, “
Constructal Multi-Scale Tree-Shaped Heat Exchanger
,”
J. Appl. Phys.
,
96
(
3
), pp.
1709
1718
.
13.
Zimparov
,
V. D.
,
Silva
,
A. K. D.
, and
Bejan
,
A.
,
2006
, “
Constructal Tree-Shaped Parallel Flow Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4558
4566
.
14.
Silva
,
A. K. d.
, and
Bejan
,
A.
,
2006
, “
Dendritic Counter Flow Heat Exchanger Experiments
,”
Int. J. Therm. Sci.
,
45
(
9
), pp.
860
869
.
15.
Gulotta
,
T. M.
,
Guarino
,
F.
,
Cellura
,
M.
, and
Lorenzini
,
G.
,
2017
, “
Constructal law Optimization of a Boiler
,”
Int. J. Heat Technol.
,
35
(
2
), pp.
297
305
.
16.
Gulotta
,
T. M.
,
Guarino
,
F.
,
Cellura
,
M.
, and
Lorenzini
,
G.
,
2018
, “
A Constructal law Optimization of a Boiler Inspired by Life Cycle Thinking
,”
Thermal Sci. Eng. Progress
,
6
(
6
), pp.
380
387
.
17.
Cai
,
C. G.
,
Feng
,
H. J.
,
Chen
,
L. G.
,
Wu
,
Z. X.
, and
Xie
,
Z. J.
,
2019
, “
Constructal Design of a Shell-and Tube Evaporator with Ammonia-Water Working Fluid
,”
Int. J. Heat Mass Transfer
,
135
(
6
), pp.
541
547
.
18.
Wu
,
Z. X.
,
Feng
,
H. J.
,
Chen
,
L. G.
,
Xie
,
Z. J.
, and
Cai
,
C. G.
,
2019
, “
Pumping Power Minimization of an Evaporator in Ocean Thermal Energy Conversion System Based on Constructal Theory
,”
Energy
,
181
(
8
), pp.
974
984
.
19.
Manjunath
,
K.
, and
Kaushik
,
S. C.
,
2014
, “
Entropy Generation and Thermo-Economic Analysis of Constructal Heat Exchanger
,”
Heat Transfer-Asian Res.
,
43
(
1
), pp.
39
60
.
20.
Manjunath
,
K.
, and
Kaushik
,
S. C.
,
2014
, “
Second law Analysis of Unbalanced Constructal Heat Exchanger
,”
Int. J. Green Energy
,
11
(
2
), pp.
173
192
.
21.
Chen
,
L. G.
,
Feng
,
H. J.
,
Xie
,
Z. H.
, and
Sun
,
F. R.
,
2015
, “
Thermal Efficiency Maximization for Hand X-Shaped Heat Exchangers Based on Constructal Theory
,”
Appl. Therm. Eng.
,
91
(
12
), pp.
456
462
.
22.
Feng
,
H. J.
,
Chen
,
L. G.
,
Wu
,
Z. X.
, and
Xie
,
Z. J.
,
2019
, “
Constructal Design of a Shell-and-Tube Heat Exchanger for Organic Fluid Evaporation Process
,”
Int. J. Heat Mass Transfer
,
131
(
3
), pp.
750
756
.
23.
Feng
,
H.
,
Chen
,
L.
, and
Xia
,
S.
,
2019
, “
Constructal Design for Disc-Shaped Heat Exchanger with Maximum Thermal Efficiency
,”
Int. J. Heat Mass Transfer
,
130
(
3
), pp.
740
746
.
24.
Feng
,
H.
,
Chen
,
L.
, and
Xie
,
Z.
,
2018
, “
Constructal Optimizations for ‘‘+” Shaped High Conductivity Channels Based on Entransy Dissipation Rate Minimization
,”
Int. J. Heat Mass Transfer
,
119
(
4
), pp.
640
646
.
25.
Chen
,
L.
,
You
,
J.
,
Feng
,
H.
, and
Xie
,
Z.
,
2019
, “
Constructal Optimization for ‘‘Disc-Point” Heat Conduction with Nonuniform Heat Generating
,”
Int. J. Heat Mass Transfer
,
134
(
5
), pp.
1191
1198
.
26.
You
,
J.
,
Feng
,
H.
,
Chen
,
L.
, and
Xie
,
Z.
,
2019
, “
Constructal Design of Nonuniform Heat Generating Area Based on Triangular Elements: A Case of Entropy Generation Minimization
,”
Int. J. Therm. Sci.
,
139
(
5
), pp.
403
212
.
27.
Feng
,
H.
,
Chen
,
L.
,
Xie
,
Z.
, and
Sun
,
F.
,
2013
, “
Constructal Optimization for H-Shaped Multi-Scale Heat Exchanger Based on Entransy Theory
,”
Sci. China Technol. Sci.
,
56
(
2
), pp.
299
307
.
28.
Chen
,
L.
,
2012
, “
Progress in Study on Constructal Theory and its Applications
,”
Sci. China Technol. Sci.
,
55
(
3
), pp.
802
820
.
29.
Chen
,
L.
,
Feng
,
H.
,
Xie
,
Z.
, and
Sun
,
F.
,
2019
, “
Progress of Constructal Theory in China Over the Past Decade
,”
Int. J. Heat Mass Transfer
,
130
(
3
), pp.
393
419
.
30.
Lorente
,
S.
, and
Bejan
,
A.
,
2019
, “
Current Trends in Constructal law and Evolutionary Design
,”
Heat Trans. Asian Res.
,
48
(
8
), pp.
3574
3589
.
31.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
816
.
32.
Bejan
,
A.
, and
Errera
,
M. R.
,
2000
, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3105
3118
.
33.
Lorenzini
,
G.
,
Biserni
,
C.
, and
Rocha
,
L. A. O.
,
2014
, “
Geometric Optimization of X-Shaped Cavities and Pathways According to Bejan’s Theory: Comparative Analysis
,”
Int. J. Heat Mass Transfer
,
73
(
6
), pp.
1
8
.
34.
Lorenzini
,
G.
,
Biserni
,
C.
, and
Rocha
,
L. A. O.
,
2012
, “
Geometric Optimization of a Convective T-Shaped Cavity on Basis of Constructal Theory
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6951
6958
.
35.
Feng
,
H.
,
Chen
,
L.
,
Xie
,
Z.
, and
Sun
,
F.
,
2015
, “
Constructal Design for X-Shaped hot Water Network Over a Rectangular Area
,”
Appl. Therm. Eng.
,
87
(
8
), pp.
760
767
.
36.
Hajmohammadi
,
M. R.
,
2017
, “
Introducing a
ψ
-Shaped Cavity for Cooling a Heat Generating Medium
,”
Int. J. Therm. Sci.
,
121
(
9
), pp.
204
212
.
37.
Hajmohammadi
,
M. R.
,
2018
, “
Optimal Design of Tree-Shaped Inverted Fins
,”
Int. J. Heat Mass Transfer
,
116
(
1
), pp.
1352
1360
.
38.
Xie
,
G.
,
Song
,
Y.
,
Asadi
,
M.
, and
Lorenzini
,
G.
,
2015
, “
Optimization of Pin-Fins for a Heat Exchanger by Entropy Generation Minimization and Constructal law
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061901
.
39.
Bhanja
,
D.
, and
Kundu
,
B.
,
2012
, “
Radiation Effect on Optimum Design Analysis of a Constructal T-Shaped fin with Variable Thermal Conductivity
,”
Heat Mass Transfer
,
48
(
1
), pp.
109
122
.
40.
Norouzi
,
E.
,
Amidpour
,
M.
, and
Rezakazemi
,
M.
,
2019
, “
Heat Recovery Steam Generator: Constructal Thermo Economic Optimization
,”
Appl. Therm. Eng.
,
148
(
2
), pp.
747
753
.
41.
Malley-Ernewein
,
A.
, and
Lorente
,
S.
,
2019
, “
Constructal Design of Thermochemical Energy Storage
,”
Int. J. Heat Mass Transfer
,
130
(
3
), pp.
1299
1306
.
42.
Ziaei
,
S.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2015
, “
Morphing Tree Structures for Latent Thermal Energy Storage
,”
J. Appl. Phys.
,
117
(
22
), pp.
224901
224905
.
43.
Vieira
,
R. S.
,
Petry
,
A. P.
,
Rocha
,
L. A. O.
,
Isoldi
,
L. A.
, and
dos Santos
,
E. D.
,
2017
, “
Numerical Evolution of Solar Chimney Geometry for Different Ground Temperatures by Means of Constructal Design
,”
Renewable Energy
,
109
(
8
), pp.
222
234
.
44.
Mosa
,
M.
,
Labat
,
M.
, and
Lorente
,
S.
,
2019
, “
Role of Flow Architectures on the Design of Radiant Cooling Panels, a Constructal Approach
,”
Appl. Therm. Eng.
,
150
(
3
), pp.
1345
1352
.
45.
Mustafa
,
A. W.
, and
Ghani
,
I. A.
,
2019
, “
Maximization of Heat Transfer Density From a Vertical Array of Flat Tubes in Cross Flow Under Fixed Pressure Drop Using Constructal Design
,”
Heat Trans. Asian Res.
,
48
(
8
), pp.
3489
3507
.
46.
Barros
,
G. M.
,
Lorenzini
,
G.
,
Isoldi
,
L. A.
,
Rocha
,
L. A. O.
, and
dos Santos
,
E. D.
,
2017
, “
Influence of Mixed Convection Laminar Flows on the Geometrical Evaluation of a Triangular Arrangement of Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
114
(
11
), pp.
1188
1200
.
47.
Almerbati
,
A.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2018
, “
The Evolutionary Design of Cooling a Plate With One Stream
,”
Int. J. Heat Mass Transfer
,
116
(
1
), pp.
9
15
.
48.
Samal
,
B.
,
Barik
,
A. K.
, and
Awad
,
M. M.
,
2019
, “
Thermo-Fluid and Entropy Generation Analysis of Newly Designed Loops for Constructal Cooling of a Square Plate
,”
Appl. Therm. Eng.
,
156
(
6
), pp.
250
262
.
49.
Rogers
,
R. D.
, and
Seddon
,
K. R.
,
2003
, “
Ionic Liquids–Solvents of the Future?
,”
Science
,
302
(
5646
), pp.
792
793
.
50.
Bozorgan
,
N.
, and
Shafahi
,
M.
,
2015
, “
Performance Evaluation of Nanofluids in Solar Energy: A Review of the Recent Literature
,”
Micro Nanosyst. Lett.
,
3
(
5
), pp.
1
15
.
51.
Boungiorno
,
J.
,
Hu
,
L. W.
,
Kim
,
S. J.
,
Hannink
,
R.
,
Truong
,
B.
, and
Forrest
,
E.
,
2008
, “
Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: an Evaluation of the Potential Features Issues, and Research Gaps
,”
Nuclear Technol.
,
162
(
1
), pp.
80
91
.
52.
Chereches
,
E. I.
,
Sharma
,
K. V.
, and
Minea
,
A. A.
,
2018
, “
A Numerical Approach in Describing Ionanofluids Behavior in Laminar and Turbulent Flow
,”
Continuum Mech. Thermodyn.
,
30
(
3
), pp.
657
666
.
53.
Paul
,
T. C.
,
Morshed
,
A. K. M. M.
,
Fox
,
E. B.
, and
Khan
,
J. A.
,
2017
, “
Enhanced Thermophysical Properties of NEILs as Heat Transfer Fluids for Solar Thermal Applications
,”
Appl. Therm. Eng.
,
109
(
1
), pp.
1
9
.
You do not currently have access to this content.