Abstract

As the substitution of the traditional heat pump system, the heat pump driven liquid dehumidification hybrid system and the temperature-humidity independent control system have great application potentials. In this paper, the ideal reversible processes of the three types of systems are built theoretically with their mathematical models, in order to compare their maximum coefficients of performance COPs. The results show that the COP1 of the ideal heat pump driven liquid dehumidification hybrid system is the maximum and the COP2 of the temperature-humidity independent control system is the minimum with the COP3 of the heat pump system falling between both. The COP1 increases by 100% with an increase in the indoor design temperature and relative humidity while the COP1 decreases with the increase in the ambient temperature and relative humidity. The COP2 of the temperature-humidity independent control system can be affected more significantly by supply air temperature difference and angle scale. In an ideal heat pump system, low-grade heat source utilized to reheat the processed air is a superior choice. The study results in this paper have guiding significance for the selection of three types of systems in practical applications.

References

1.
Zhang
,
C. X.
,
Guo
,
Z. J.
,
Liu
,
Y. F.
,
Cong
,
X. C.
, and
Peng
,
D. G.
,
2014
, “
A Review on Thermal Response Test of Ground-Coupled Heat Pump Systems
,”
Renew. Sust. Energy Rev.
,
40
, pp.
851
867
. 10.1016/j.rser.2014.08.018
2.
La
,
D.
,
Dai
,
Y. J.
,
Li
,
Y.
,
Wang
,
R. Z.
, and
Ge
,
T. S.
,
2010
, “
Technical Development of Rotary Desiccant Dehumidification and Air Conditioning: A Review
,”
Renew. Sust. Energy Rev.
,
14
(
1
), pp.
130
147
. 10.1016/j.rser.2009.07.016
3.
Song
,
M.
,
Deng
,
S.
,
Dang
,
C.
,
Mao
,
N.
, and
Wang
,
Z.
,
2018
, “
Review on Improvement for Air Source Heat Pump Units During Frosting and Defrosting
,”
Appl. Energy
,
211
, pp.
1150
1170
. 10.1016/j.apenergy.2017.12.022
4.
Sheng
,
C.
,
Lei
,
Z.
,
Wang
,
Y.
,
Zhang
,
C.
, and
Yang
,
Y.
,
2018
, “
A Review on the Current Research and Application of Wastewater Source Heat Pumps in China
,”
Therm. Sci. Eng. Progress
,
6
, pp.
140
156
. 10.1016/j.tsep.2018.03.007
5.
Mohanraj
,
M.
,
Belyayev
,
Y.
,
Jayaraj
,
S.
, and
Kaltayev
,
A.
,
2018
, “
Research and Developments on Solar Assisted Compression Heat Pump Systems—A Comprehensive review (Part A: Modeling and Modifications)
,”
Renew. Sust. Energy Rev.
,
83
, pp.
90
123
. 10.1016/j.rser.2017.08.022
6.
Mohanraj
,
M.
,
Belyayev
,
Y.
,
Jayaraj
,
S.
, and
Kaltayev
,
A.
,
2018
, “
Research and Developments on Solar Assisted Compression Heat Pump Systems—A Comprehensive review (Part B: Applications)
,”
Renew. Sust. Energy Rev.
,
83
, pp.
124
155
. 10.1016/j.rser.2017.08.086
7.
Sarbu
,
I.
, and
Sebarchievici
,
C.
,
2014
, “
General Review of Ground-Source Heat Pump Systems for Heating and Cooling of Buildings
,”
Energy Buildings
,
70
, pp.
441
454
. 10.1016/j.enbuild.2013.11.068
8.
Liu
,
W.
,
Lian
,
Z.
,
Radermacher
,
R.
, and
Yao
,
Y.
,
2007
, “
Energy Consumption Analysis on a Dedicated Outdoor Air System With Rotary Desiccant Wheel
,”
Energy
,
32
(
9
), pp.
1749
1760
. 10.1016/j.energy.2006.11.012
9.
Ge
,
G.
,
Xiao
,
F.
, and
Xu
,
X.
,
2011
, “
Model-Based Optimal Control of a Dedicated Outdoor Air-Chilled Ceiling System Using Liquid Desiccant and Membrane-Based Total Heat Recovery
,”
Appl. Energy
,
88
(
11
), pp.
4180
4190
. 10.1016/j.apenergy.2011.04.045
10.
Liu
,
X. H.
, and
Jiang
,
Y.
,
2006
,
Temperature and Humidity Independent Air-Conditioning System
,
Architecture & Building Press
,
Beijing
.
11.
Nawaz
,
K.
, and
Glusenkamp
,
K.
,
2018
, “
Separate Sensible and Latent Cooling Systems: A Critical Review of the State-of-the-art and Future Prospects
,”
17th International Refrigeration and Air Conditioning Conference
,
Purdue
,
July 9–12, 2018
,
2595
, pp.
1
9
.
12.
Woods
,
J.
, and
Kozuba
,
E.
,
2013
, “
A Desiccant-Enhanced Evaporative air Conditioner: Numerical Model and Experiments
,”
Energy Convers. Manage.
,
65
, pp.
208
220
. 10.1016/j.enconman.2012.08.007
13.
Lowenstein
,
A.
,
Slayzak
,
S.
,
Ryan
,
J.
, and
Pesaran
,
A.
,
1998
,
Advanced Commercial Liquid-Desiccant Technology Development Study
,
NREL/TP-550-24688
,
Golden, CO
.
14.
Zhao
,
K.
,
Liu
,
X.-H.
,
Zhang
,
T.
, and
Jiang
,
Y.
,
2011
, “
Performance of Temperature and Humidity Independent Control Air-Conditioning System in an Office Building
,”
Energy Buildings
,
43
(
8
), pp.
1895
1903
. 10.1016/j.enbuild.2011.03.041
15.
Zhang
,
T.
,
Liu
,
X. H.
, and
Jiang
,
Y.
,
2014
, “
Development of Temperature and Humidity Independent Control (THIC) Air-Conditioning Systems in China—A Review
,”
Renew. Sust. Energy Rev.
,
29
, pp.
793
803
. 10.1016/j.rser.2013.09.017
16.
Jiang
,
Y.
,
Ge
,
T. S.
,
Wang
,
R. Z.
, and
Huang
,
Y.
,
2014
, “
Experimental Investigation on a Novel Temperature and Humidity Independent Control Air Conditioning System—Part II: Heating Condition
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
775
783
. 10.1016/j.applthermaleng.2014.08.030
17.
Zhu
,
W.
,
Li
,
Z.
,
Liu
,
S.
,
Liu
,
S.
, and
Jiang
,
Y.
,
2010
, “
In Situ Performance of Independent Humidity Control Air-Conditioning System Driven by Heat Pumps
,”
Energy Buildings
,
42
(
10
), pp.
1747
1752
. 10.1016/j.enbuild.2010.05.010
18.
Zhang
,
L.
,
Dang
,
C.
, and
Hihara
,
E.
,
2010
, “
Performance Analysis of a No-Frost Hybrid Air Conditioning System With Integrated Liquid Desiccant Dehumidification
,”
Int. J. Refrig.
,
33
(
1
), pp.
116
124
. 10.1016/j.ijrefrig.2009.08.007
19.
Su
,
W.
,
Li
,
W. H.
, and
Zhang
,
X. S.
,
2017
, “
Simulation Analysis of a Novel No-Frost Air-Source Heat Pump With Integrated Liquid Desiccant Dehumidification and Compression-Assisted Regeneration
,”
Energy Convers. Manage.
,
148
, pp.
1157
1169
. 10.1016/j.enconman.2017.06.059
20.
Su
,
W.
, and
Zhang
,
X. S.
,
2017
, “
Performance Analysis of a Novel Frost-Free Air-Source Heat Pump With Integrated Membrane-Based Liquid Desiccant Dehumidification and Humidification
,”
Energy Buildings
,
145
, pp.
293
303
. 10.1016/j.enbuild.2017.04.024
21.
Zhang
,
L.
,
Hihara
,
E.
, and
Saikawa
,
M.
,
2012
, “
Combination of Air-Source Heat Pumps With Liquid Desiccant Dehumidification of Air
,”
Energy Convers. Manage.
,
57
, pp.
107
116
. 10.1016/j.enconman.2011.12.023
22.
Shan
,
N. N.
,
Yin
,
Y. G.
, and
Zhang
,
X. S.
,
2018
, “
Study on Performance of a Novel Energy-Efficient Heat Pump System Using Liquid Desiccant
,”
Appl. Energy
,
219
, pp.
325
337
. 10.1016/j.apenergy.2018.03.006
23.
Mohan
,
B. S.
,
Tiwari
,
S.
, and
Maiya
,
M. P.
,
2015
, “
Experimental Investigations on Performance of Liquid Desiccant-Vapor Compression Hybrid Air Conditioner
,”
Appl. Therm. Eng.
,
77
, pp.
153
162
. 10.1016/j.applthermaleng.2014.12.004
24.
Su
,
B.
,
Qu
,
W.
,
Han
,
W.
, and
Jin
,
H.
,
2018
, “
Feasibility of a Hybrid Photovoltaic/Thermal and Liquid Desiccant System for Deep Dehumidification
,”
Energy Convers. Manage.
,
163
, pp.
457
467
. 10.1016/j.enconman.2018.02.018
25.
Coca-Ortegón
,
A.
,
Prieto
,
J.
, and
Coronas
,
A.
,
2016
, “
Modelling and Dynamic Simulation of a Hybrid Liquid Desiccant System Regenerated With Solar Energy
,”
Appl. Therm. Eng.
,
97
, pp.
109
117
. 10.1016/j.applthermaleng.2015.10.149
26.
Cai
,
D.
,
Qiu
,
C.
,
Zhang
,
J.
,
Liu
,
Y.
,
Liang
,
X.
, and
He
,
G.
,
2017
, “
Performance Analysis of a Novel Heat Pump Type Air Conditioner Coupled With a Liquid Dehumidification/Humidification Cycle
,”
Energy Convers. Manage.
,
148
, pp.
1291
1305
. 10.1016/j.enconman.2017.06.076
27.
Zhang
,
T.
,
Liu
,
X. H.
, and
Jiang
,
Y.
,
2013
, “
Performance Comparison of Liquid Desiccant Air Handling Processes From the Perspective of Match Properties
,”
Energy Convers. Manage.
,
75
, pp.
51
60
. 10.1016/j.enconman.2013.06.006
28.
Zhang
,
T.
,
Liu
,
X. H.
, and
Jiang
,
Y.
,
2012
, “
Performance Optimization of Heat Pump Driven Liquid Desiccant Dehumidification Systems
,”
Energy Buildings
,
52
, pp.
132
144
. 10.1016/j.enbuild.2012.06.002
29.
Niu
,
X.
,
Xiao
,
F.
, and
Ma
,
Z.
,
2012
, “
Investigation on Capacity Matching in Liquid Desiccant and Heat Pump Hybrid Air-Conditioning Systems
,”
Int. J. Refrig.
,
35
, pp.
160
170
. 10.1016/j.ijrefrig.2011.08.004
30.
Xie
,
Y.
,
Zhang
,
T.
, and
Liu
,
X. H.
,
2016
, “
Performance Investigation of a Counter-Flow Heat Pump Driven Liquid Desiccant Dehumidification System
,”
Energy
,
115
, pp.
446
457
. 10.1016/j.energy.2016.09.037
31.
Su
,
B. S.
,
Han
,
W.
,
Sui
,
J.
, and
Jin
,
H. G.
,
2018
, “
Feasibility of a Two-Stage Liquid Desiccant Dehumidification System Driven by Low-Temperature Heat and Power
,”
Appl. Therm. Eng.
,
128
, pp.
795
804
. 10.1016/j.applthermaleng.2017.09.048
32.
Zhang
,
N.
,
Yin
,
S. Y.
, and
Zhang
,
L. Z.
,
2016
, “
Performance Study of a Heat Pump Driven and Hollow Fiber Membrane-Based Two-Stage Liquid Desiccant Air Dehumidification System
,”
Appl. Energy
,
179
, pp.
727
737
. 10.1016/j.apenergy.2016.07.037
33.
Sanaye
,
S.
, and
Taheri
,
M.
,
2018
, “
Modeling and Multi-objective Optimization of a Modified Hybrid Liquid Desiccant Heat Pump (LD-HP) System for Hot and Humid Regions
,”
Appl. Therm. Eng.
,
129
, pp.
212
229
. 10.1016/j.applthermaleng.2017.09.116
34.
Weng
,
W.-L.
, and
Huang
,
B.-C.
,
1996
, “
Thermodynamic Performance of Non-CFC Working Fluid in Heat–Pump Cycles
,”
Appl. Therm. Eng.
,
16
(
7
), pp.
571
578
. 10.1016/1359-4311(95)00058-5
35.
Li
,
Z.
,
Liu
,
X.-H.
,
Lun
,
Z.
, and
Jiang
,
Y.
,
2010
, “
Analysis on the Ideal Energy Effectiveness of Dehumidification Process From Buildings
,”
Energy Buildings
,
42
(
11
), pp.
2014
2020
. 10.1016/j.enbuild.2010.06.008
36.
Zhang
,
L.
,
Liu
,
X. H.
, and
Jiang
,
Y.
,
2012
, “
A New Concept for Analyzing the Energy Effectiveness of Air Conditioning Systems
,”
Energy Buildings
,
44
, pp.
45
53
. 10.1016/j.enbuild.2011.10.014
37.
Xu
,
S. X.
,
Ding
,
R. C.
,
Niu
,
J. H.
, and
Ma
,
G. Y.
,
2018
, “
Investigation of Air-Source Heat Pump Using Heat Pipes as Heat Radiator
,”
Int. J. Refrig.
,
90
, pp.
91
98
. 10.1016/j.ijrefrig.2018.03.025
38.
Xu
,
J. F.
,
Zhao
,
Y. H.
,
Quan
,
Z. H.
,
Wang
,
G.
, and
Wang
,
J. T.
,
2018
, “
Air–Water Dual-Source Heat Pump System With New Composite Evaporator
,”
Appl. Therm. Eng.
,
141
, pp.
483
493
. 10.1016/j.applthermaleng.2017.11.128
39.
Liu
,
X.
,
Hui
,
F. F.
,
Guo
,
Q.
,
Zhang
,
Y. B.
, and
Sun
,
T. T.
,
2016
, “
Experimental Study of a new Multifunctional Water Source Heat Pump System
,”
Energy Buildings
,
111
, pp.
408
423
. 10.1016/j.enbuild.2015.11.069
40.
Wang
,
X. Y.
,
Wang
,
Y. F.
,
Wang
,
Z.
,
Liu
,
Y. X.
,
Zhu
,
Y. Z.
, and
Chen
,
H. J.
,
2018
, “
Simulation-Based Analysis of a Ground Source Heat Pump System Using Super-Long Flexible Heat Pipes Coupled Borehole Heat Exchanger During Heating Season
,”
Energy Convers. Manage.
,
164
, pp.
132
143
. 10.1016/j.enconman.2018.03.001
You do not currently have access to this content.