Abstract

Surface temperature uniformity is an important factor in the thermal management of electronics. The present numerical study investigates the influence of multiple bypass injections on the wall temperature distribution of a single-phase mini/micro-channel. The proposed scheme consists of sending a fraction of the coolant through the inlet of a 0.6 mm deep, 2.5 mm wide, and 25 mm long channel and injecting the remaining coolant through multiple bypass inlets on top of the channel positioned at different axial locations. The study explores four different configurations: the first one being three equispaced bypass micro-nozzles or bypass inlets of uniform diameter (1 mm), the second one being three equispaced bypass micro-nozzles of varying diameter (2 mm, 1 mm, and 0.5 mm), the third one being five equispaced bypass micro-nozzles of varying diameter (2 mm, 1 mm, 0.5 mm, 0.25 mm, and 0.125 mm), and the fourth one being five bypass micro-nozzles, but with three equispaced bypass inlets of varying diameter (2 mm, 1 mm, and 0.5 mm), and the last two bypass inlets of the same diameter as that of the third inlet (0.5 mm). Water is considered as the coolant in the study and the simulations are carried out for two mass fluxes of 465 kg/m2s and 930 kg/m2s and two heat fluxes of 25 kW/m2 and 125 kW/m2. The thermal performance of the channel is evaluated for bypass percentages of 25%, 50%, and 75%, with the Reynolds number varying from 150 to 900 at the primary channel inlet and at the secondary channel inlet, and the range of the nozzle Reynolds number varying from 10 to 707. The fourth configuration results in a near uniform wall temperature distribution, with 82–89% reduction in the wall temperature nonuniformity compared with the no-bypass case. The reductions for the third, second and first configurations are 65–71%, 53–76%, and 54–74%, respectively. The third configuration results in an average heat transfer coefficient enhancement of up to 49%. On the whole, the improvement in the wall temperature uniformity is higher than the increase in the pressure drop, and the increase in the channel heat transfer coefficient is higher than pressure drop for some cases.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
. 10.1109/EDL.1981.25367
2.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
. 10.1016/j.ijheatmasstransfer.2005.03.017
3.
Prasher
,
R. S.
,
Dirner
,
J.
,
Chang
,
J. Y.
,
Myers
,
A.
,
Chau
,
D.
,
He
,
D.
, and
Prstic
,
S.
,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micro Pin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
141
153
. 10.1115/1.2402179
4.
Vanapalli
,
S.
,
ter Brake
,
H. J. M.
,
Jansen
,
H. V.
,
Burger
,
J. F.
,
Holland
,
H. J.
,
Veenstra
,
T. T.
, and
Elwenspoek
,
M. C.
,
2007
, “
Pressure Drop of Laminar Gas Flows in a Microchannel Containing Various Pillar Matrices
,”
J. Micromech. Microeng.
,
17
(
7
), p.
1381
1386
. 10.1088/0960-1317/17/7/021
5.
John
,
T. J.
,
Mathew
,
B.
, and
Hegab
,
H.
,
2010
, “
Parametric Study on the Combined Thermal and Hydraulic Performance of Single Phase Micro Pin-Fin Heat Sinks Part I: Square and Circle Geometries
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2177
2190
. 10.1016/j.ijthermalsci.2010.06.011
6.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
,
2009
, “
Enhanced Microchannel Heat Sinks Using Oblique Fins
,”
Proceedings of InterPACK Conference
,
San Francisco, CA
,
July 19–23, 2009
,
ASME Paper No. InterPACK2009-89059, 43604
, pp.
253
260
.
7.
Li
,
Y. F.
,
Xia
,
G. D.
,
Ma
,
D. D.
,
Jia
,
Y. T.
, and
Wang
,
J.
,
2016
, “
Characteristics of Laminar Flow and Heat Transfer in Microchannel Heat Sink With Triangular Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer
,
98
, pp.
17
28
. 10.1016/j.ijheatmasstransfer.2016.03.022
8.
Ghani
,
I. A.
,
Kamaruzaman
,
N.
, and
Sidik
,
N. A. C.
,
2017
, “
Heat Transfer Augmentation in a Microchannel Heat Sink With Sinusoidal Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1969
1981
. 10.1016/j.ijheatmasstransfer.2017.01.046
9.
Datta
,
A.
,
Debbarma
,
D.
,
Biswas
,
N.
,
Sanyal
,
D.
, and
Das
,
A. K.
,
2021
, “
The Role of Flow Structures on the Thermal Performance of Microchannels With Wall Features
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021019
. 10.1115/1.4047709
10.
Xie
,
G.
,
Chen
,
Z.
,
Sunden
,
B.
, and
Zhang
,
W.
,
2013
, “
Numerical Analysis of Flow and Thermal Performance of Liquid-Cooling Microchannel Heat Sinks With Bifurcation
,”
Numer. Heat Transfer Part A: Appl.
,
64
(
11
), pp.
902
919
. 10.1080/10407782.2013.807689
11.
Shen
,
H.
,
Liu
,
X.
,
Yan
,
H.
,
Xie
,
G.
, and
Sunden
,
B.
,
2018
, “
Enhanced Thermal Performance of Internal Y-Shaped Bifurcation Microchannel Heat Sinks With Metal Foams
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011001
. 10.1115/1.4036767
12.
Dominic
,
A.
,
Sarangan
,
J.
,
Suresh
,
S.
, and
Devah Dhanush
,
V. S.
,
2015
, “
An Experimental Investigation of Wavy and Straight Minichannel Heat Sinks Using Water and Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
3
), p.
031012
. 10.1115/1.4030104
13.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
,
2006
, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
ASME J. Electron. Packag.
,
129
(
1
), pp.
63
70
. 10.1115/1.2429711
14.
Silva
,
C.
,
Marotta
,
E.
, and
Fletcher
,
L.
,
2006
, “
Flow Structure and Enhanced Heat Transfer in Channel Flow With Dimpled Surfaces: Application to Heat Sinks in Microelectronic Cooling
,”
ASME J. Electron. Packag.
,
129
(
2
), pp.
157
166
. 10.1115/1.2721087
15.
Abouali
,
O.
, and
Baghernezhad
,
N.
,
2010
, “
Numerical Investigation of Heat Transfer Enhancement in a Microchannel With Grooved Surfaces
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041005
. 10.1115/1.4000862
16.
Solovitz
,
S. A.
, and
Conder
,
T. E.
,
2010
, “
Flow and Thermal Investigation of a Groove-Enhanced Minichannel Application
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
1
), pp.
1
11
. 10.1115/1.4002411
17.
Samal
,
S. K.
, and
Moharana
,
M. K.
,
2020
, “
Thermohydrodynamic Performance Evaluation of Recharging, Interrupted and Simple Microchannels: A Comparative Study
,”
ASME J. Heat Transfer
,
142
(
1
), p.
012503
. 10.1115/1.4045066
18.
Cheng
,
J. C.
,
Tsay
,
Y. L.
,
Liu
,
C. T.
, and
Chang
,
S.
,
2020
, “
Heat Transfer Enhancement of Microchannel Heat Sink With Longitudinal Vortex Generators and Bypass Jet Flow
,”
Numer. Heat Transfer Part A: Appl.
,
77
(
8
), pp.
807
819
. 10.1080/10407782.2020.1720413
19.
Xu
,
J. L.
,
Gan
,
Y. H.
,
Zhang
,
D. C.
, and
Li
,
X. H.
,
2005
, “
Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1662
1674
. 10.1016/j.ijheatmasstransfer.2004.12.008
20.
Vafai
,
K.
, and
Zhu
,
L.
,
1999
, “
Analysis of Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2287
2297
. 10.1016/S0017-9310(98)00017-9
21.
Zhuang
,
Y.
,
Ma
,
C. F.
, and
Qin
,
M.
,
1997
, “
Experimental Study on Local Heat Transfer With Liquid Impingement Flow in Two-Dimensional Micro-Channels
,”
Int. J. Heat Mass Transfer
,
40
(
17
), pp.
4055
4059
. 10.1016/S0017-9310(97)00039-2
22.
Jang
,
S. P.
, and
Kim
,
S. J.
,
2004
, “
Fluid Flow and Thermal Characteristics of a Microchannel Heat Sink Subject to an Impinging Air Jet
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
770
779
. 10.1115/1.1924628
23.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2006
, “
Experimental and Numerical Investigation of Single-Phase Heat Transfer Using a Hybrid Jet-Impingement/Micro-Channel Cooling Scheme
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
682
694
. 10.1016/j.ijheatmasstransfer.2005.08.021
24.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2008
, “
Single-Phase Hybrid Micro-Channel/Micro-Jet Impingement Cooling
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4342
4352
. 10.1016/j.ijheatmasstransfer.2008.02.023
25.
Barrau
,
J.
,
Chemisana
,
D.
,
Rosell
,
J.
,
Tadrist
,
L.
, and
Ibáñez
,
M.
,
2010
, “
An Experimental Study of a New Hybrid Jet Impingement/Micro-Channel Cooling Scheme
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2058
2066
. 10.1016/j.applthermaleng.2010.05.013
26.
Barrau
,
J.
,
Omri
,
M.
,
Chemisana
,
D.
,
Rosell
,
J.
,
Ibañez
,
M.
, and
Tadrist
,
L.
,
2012
, “
Numerical Study of a Hybrid Jet Impingement/Micro-Channel Cooling Scheme
,”
Appl. Therm. Eng.
,
33–34
, pp.
237
245
. 10.1016/j.applthermaleng.2011.10.001
27.
Li
,
W.
,
Ma
,
J.
,
Alam
,
T.
,
Yang
,
F.
,
Khan
,
J.
, and
Li
,
C.
,
2018
, “
Flow Boiling of HFE-7100 in Silicon Microchannels Integrated With Multiple Micro-Nozzles and Reentry Micro-Cavities
,”
Int. J. Heat Mass Transfer
,
123
, pp.
354
366
. 10.1016/j.ijheatmasstransfer.2018.02.108
28.
Li
,
W.
,
Qu
,
X.
,
Alam
,
T.
,
Yang
,
F.
,
Chang
,
W.
,
Khan
,
J.
, and
Li
,
C.
,
2017
, “
Enhanced Flow Boiling in Microchannels Through Integrating Multiple Micro-Nozzles and Re-Entry Microcavities
,”
Appl. Phys. Lett.
,
110
(
1
), p.
014104
. 10.1063/1.4973495
29.
Li
,
W.
,
Yang
,
F.
,
Alam
,
T.
,
Qu
,
X.
,
Peng
,
B.
,
Khan
,
J.
, and
Li
,
C.
,
2018
, “
Enhanced Flow Boiling in Microchannels Using Auxiliary Channels and Multiple Micronozzles (I): Characterizations of Flow Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
116
, pp.
208
217
. 10.1016/j.ijheatmasstransfer.2017.09.009
30.
Timchenko
,
V.
,
Reizes
,
J.
, and
Leonardi
,
E.
,
2007
, “
An Evaluation of Synthetic Jets for Heat Transfer Enhancement in Air Cooled Micro-Channels
,”
Int. J. Numer. Methods Heat Fluid Flow
,
17
(
3
), pp.
263
283
. 10.1108/09615530710730148
31.
Trávníček
,
Z.
,
Dančová
,
P.
,
Kordík
,
J.
,
Vít
,
T.
, and
Pavelka
,
M.
,
2011
, “
Heat and Mass Transfer Caused by a Laminar Channel Flow Equipped With a Synthetic Jet Array
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
4
), p.
041006
. 10.1115/1.4003428
32.
Chandratilleke
,
T. T.
,
Jagannatha
,
D.
, and
Narayanaswamy
,
R.
,
2009
, “
Performance Analysis of a Synthetic jet-Microchannel Hybrid Heat Sink for Electronic Cooling
,”
IEEE 11th Electronics Packaging Technology Conference
,
Singapore
,
Dec. 9–11, 2009
, pp.
630
635
. 10.1109/EPTC.2009.5416472
33.
Fang
,
R.
, and
Khan
,
J. A.
,
2013
, “
Active Heat Transfer Enhancement in Single-Phase Microchannels by Using Synthetic Jets
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011006
. 10.1115/1.4007916
34.
Go
,
D. B.
, and
Mongia
,
R. K.
,
2008
, “
Experimental Studies on Synthetic Jet Cooling Enhancement for Portable Platforms
,”
IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Orlando, FL
,
May 28–31, 2008
, pp.
528
536
. 10.1109/ITHERM.2008.45443133
35.
Loganathan
,
R.
,
Mohiuddin
,
A.
, and
Gedupudi
,
S.
,
2020
, “
Experimental Investigation of the Effect of Bypass Inlet on Flow Boiling in a Mini/Micro-Channel
,”
Int. Commun. Heat Mass Transfer
,
110
, p.
104405
. 10.1016/j.icheatmasstransfer.2019.104405
36.
Qu
,
W.
,
Mudawar
,
I.
,
Lee
,
S. Y.
, and
Wereley
,
S. T.
,
2006
, “
Experimental and Computational Investigation of Flow Development and Pressure Drop in a Rectangular Micro-Channel
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
1
9
. 10.1115/1.2159002
37.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
,
2005
, “
Heat Transfer in Micro-Channels: Comparison of Experiments With Theory and Numerical Results
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5580
5601
. 10.1016/j.ijheatmasstransfer.2005.05.041
38.
Sahar
,
A. M.
,
Wissink
,
J.
,
Mahmoud
,
M. M.
,
Karayiannis
,
T. G.
, and
Ishak
,
M. S. A.
,
2017
, “
Effect of Hydraulic Diameter and Aspect Ratio on Single Phase Flow and Heat Transfer in a Rectangular Microchannel
,”
Appl. Therm. Eng.
,
115
, pp.
793
814
. 10.1016/j.applthermaleng.2017.01.018
39.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
,
2004
, “
Mini-and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3993
4004
. 10.1016/j.ijheatmasstransfer.2004.04.016
40.
Moharana
,
M. K.
,
Singh
,
P. K.
, and
Khandekar
,
S.
,
2012
, “
Optimum Nusselt Number for Simultaneously Developing Internal Flow Under Conjugate Conditions in a Square Microchannel
,”
ASME J. Heat Transfer
,
134
(
7
), p.
071703
. 10.1115/1.4006110
41.
Morini
,
G. L.
, and
Yang
,
Y.
,
2013
, “
Guidelines for the Determination of Single-Phase Forced Convection Coefficients in Microchannels
,”
ASME J. Heat Transfer
,
135
(
10
), p.
101004
. 10.1115/1.4024499
42.
Omri
,
M.
, and
Galanis
,
N.
,
2009
, “
Evaluation of Confined Natural and Forced Convection Predictions by Different Turbulence Models
,”
Int. J. Numer. Methods Heat Fluid Flow
,
19
(
1
), pp.
5
24
. 10.1108/09615530910922125
43.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2004
, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
54
61
. 10.1115/1.1643752
44.
Bennett
,
T. D.
,
2019
, “
Correlations for Convection in Hydrodynamically Developing Laminar Duct Flow
,”
ASME J. Heat Transfer
,
141
(
11
), p.
111701
. 10.1115/1.4044390
45.
Mirmanto
,
2013
, “
Single-Phase Flow and Flow Boiling of Water in Horizontal Rectangular Microchannels
,”
Ph.D. thesis
,
Brunel University
,
London, UK
.
You do not currently have access to this content.