Abstract

The thermofluid characteristics of the infrared suppression (IRS) device used in the marine gas turbine as an exhaust system are numerically investigated here. The prime objective is to observe the impact of convection united with surface radiation on the cooling of the IRS. Furthermore, the time taken to cool down the device is also estimated. A comparison exercise is also carried out to elucidate the impact of radiation considering the surface radiation and without it (taking only convection). The numerical solution of the Navier–Stokes equation, energy equation, and radiation equation, along with the turbulence equations, are performed using ANSYS FLUENT 15.0. Various relevant parameters are taken for the analysis, namely, Rayleigh number (Ra) (1 × 1010 ≤ Ra ≤ 1 × 1012), diameter ratio (DR) (1.01 ≤ DR ≤ 1.3), funnel overlapping (OL) (−20% ≤ OL ≤ 20%), and emissivity of the surface (ε) (0 ≤ ε ≤ 1). It is noticed that surface radiation has an enormous contribution to the total heat transfer and, thus, could not be neglected. The total heat transfer rate and mass flowrate increase with Ra and DR. Also, the contribution of convective heat transfer drops with the rise in emissivity. In addition, the convection united with surface radiation case reduces the cooling time (almost half) than the natural convection alone case.

References

1.
Birk
,
A. M.
,
Davis
,
W. R.
, and
Limited
,
W. R. D. E.
,
1989
, “
Suppressing the Infrared Signatures of Marine Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
111
(
1
), pp.
123
129
.
2.
Birk
,
A. M.
, and
VanDam
,
D.
,
1994
, “
Infrared Signature Suppression for Marine Gas Turbines: Comparison of Sea Trial and Model Test Results for the DRES Ball IRSS System
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), p.
75
81
.
3.
Birk
,
A. M.
, and
Vandam
,
D.
,
1989
, “
Marine Gas Turbine Infra-red Signature Suppression: Aerothermal Design Considerations
,”
Proceedings of the ASME Turbo Expo
,
Toronto, Ontario, Canada
,
June 4–8
, vol.
2
.
4.
Thompson
,
J.
, and
Vaitekunas
,
D.
,
1998
, “
IR Signature Suppression of Modern Naval Ships
,”
Proceedings of the ASNE 21st Century Combat Technology Symposium
,
Jan. 27–30
, pp.
1
9
.
5.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Numerical Investigation of Air Suction Through the Louvers of a Funnel Due to High Velocity Air Jet
,”
Comput. Fluids
,
39
(
9
), pp.
1597
1608
.
6.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Prediction of Entrance Length and Mass Suction Rate for a Cylindrical Sucking Funnel
,”
Int. J. Numer. Methods Fluids
,
63
(
6
), pp.
681
700
.
7.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Experimental and Numerical Investigation of Air Entrainment Into an Infrared Suppression Device
,”
Appl. Therm. Eng.
,
75
, pp.
33
44
.
8.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2014
, “
New Correlation for Prediction of Air Entrainment Into an Infrared Suppression (IRS) Device
,”
Appl. Ocean Res.
,
47
, pp.
303
312
.
9.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Entrainment of Air Into an Infrared Suppression (IRS) Device Using Circular and Non-circular Multiple Nozzles
,”
Comput. Fluids
,
114
, pp.
26
38
.
10.
Barik
,
A. K.
,
Dash
,
S. K.
,
Patro
,
P.
, and
Mohapatra
,
S.
,
2014
, “
Experimental and Numerical Investigation of Air Entrainment Into a Louvred Funnel
,”
Appl. Ocean Res.
,
48
, pp.
176
185
.
11.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2019
, “
Experimental and Numerical Study of Air Entrainment Into a Louvered Conical IRS Device and Comparison With Existing IRS Devices
,”
Int. J. Therm. Sci.
,
141
, pp.
114
132
.
12.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2020
, “
Numerical Analysis of Air Entrainment and Exit Temperature of a Real Scale Conical Infrared Suppression (IRS) Device
,”
Int. J. Therm. Sci.
,
156
, p.
106482
.
13.
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2020
, “
Numerical Investigation of Flow and Heat Transfer Characteristics of a Full-Scale Infrared Suppression Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
153
, p.
106355
.
14.
Chandrakar
,
V.
,
Mukherjee
,
A.
,
Ranjan Senapati
,
J.
, and
Mohanty
,
A.
,
2021
, “
Entropy Generation Study of Turbine Exhaust Gas Through an Infrared Suppression Device
,”
J. Thermophys. Heat Transf.
, pp.
1
12
.
15.
Mohanty
,
A.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2019
, “
Natural Convection Cooling of an Infrared Suppression (IRS) Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
141
, pp.
103
113
.
16.
Mohanty
,
A.
,
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2020
, “
Natural Convection Cooling of an Infrared Suppression Device (IRS) With Conical Funnels—A Computational Approach
,”
Int. Commun. Heat Mass Transf.
,
118
, p.
104891
.
17.
Behnia
,
M.
,
Reizes
,
J. A.
, and
De Vahl Davis
,
G.
,
1990
, “
Combined Radiation and Natural Convection in a Rectangular Cavity With a Transparent Wall and Containing a Non-participating Fluid
,”
Int. J. Numer. Methods Fluids
,
10
(
3
), pp.
305
325
.
18.
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
1993
, “
Interaction of Surface Radiation With Free Convection in a Square Cavity
,”
Int. J. Heat Fluid Flow
,
14
(
3
), pp.
3
267
.
19.
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
1994
, “
Correlations for Free Convection and Surface Radiation in a Square Cavity
,”
Int. J. Heat Fluid Flow
,
15
(
3
), pp.
249
251
.
20.
Akiyama
,
M.
, and
Chong
,
Q. P.
,
1997
, “
Numerical Analysis of Natural Convection With Surface Radiation in a Square Enclosure
,”
Numer. Heat Transfer, Part A: Appl.
,
32
(
4
), pp.
419
433
.
21.
Ramesh
,
N.
, and
Venkateshan
,
S. P.
,
1999
, “
Effect of Surface Radiation on Natural Convection in a Square Enclosure
,”
J. Thermophys. Heat Transf.
,
13
(
3
), pp.
299
301
.
22.
Yih
,
K. A.
,
1999
, “
Radiation Effect on Natural Convection Over a Vertical Cylinder Embedded in Porous Media
,”
Int. Commun. Heat Mass Transfer
,
26
(
2
), pp.
259
267
.
23.
Shaija
,
A.
, and
Narasimham
,
G. S. V. L.
,
2009
, “
Effect of Surface Radiation on Conjugate Natural Convection in a Horizontal Annulus Driven by Inner Heat Generating Solid Cylinder
,”
Int. J. Heat Mass Transf.
,
52
(
25–26
), pp.
5759
5769
.
24.
Wu
,
S. Y.
,
Guan
,
J. Y.
,
Xiao
,
L.
,
Shen
,
Z. G.
, and
Xu
,
L. H.
,
2013
, “
Experimental Investigation on Heat Loss of a Fully Open Cylindrical Cavity With Different Boundary Conditions
,”
Exp. Therm. Fluid Sci.
,
45
, pp.
92
101
.
25.
Shen
,
Z. G.
,
Wu
,
S. Y.
,
Xiao
,
L.
,
Li
,
D. L.
, and
Wang
,
K.
,
2015
, “
Experimental and Numerical Investigations of Combined Free Convection and Radiation Heat Transfer in an Upward-Facing Cylindrical Cavity
,”
Int. J. Therm. Sci.
,
89
, pp.
314
326
.
26.
Shen
,
Z. G.
,
Wu
,
S. Y.
,
Xiao
,
L.
,
Qiu
,
Y.
, and
Wang
,
K.
,
2017
, “
Effect of Aperture Size on Free Convection and Radiation Heat Transfer in Isoflux Upward-Facing Cylindrical Cavities
,”
Exp. Therm. Fluid Sci.
,
87
, pp.
1
14
.
27.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression Device With Conical Funnels
,”
Int. Commun. Heat Mass Transfer
,
123
, p.
105208
.
28.
Mukherjee
,
A.
,
Senapati
,
J. R.
,
Chandrakar
,
V.
, and
Swain
,
P. K.
,
2021
, “
Entropy Production Study of an IRS Device Having Diathermic Conical Funnels With Surface Radiation
,”
Int. Commun. Heat Mass Transfer
,
128
, p.
105637
.
29.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
New Correlations for Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression System With Conical Funnels
,”
J. Heat Transfer-Trans. ASME
,
143
(
8
), pp.
1
11
.
30.
Chandrakar
,
V.
,
Mukherjee
,
A.
,
Senapati
,
J. R.
, and
Barik
,
A. K.
,
2022
, “
Conjugate Free Convection Heat Transfer and Thermodynamic Analysis of Infrared Suppression Device With Cylindrical Funnels
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
4
), p.
042603
.
31.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London
.
32.
Chandrakar
,
V.
,
Senapati
,
J. R.
, and
Mohanty
,
A.
,
2020
, “
Conjugate Heat Transfer Due to Conduction, Natural Convection, and Radiation From a Vertical Hollow Cylinder With Finite Thickness
,”
Numer. Heat Transfer., Part A: Appl.
,
79
(
6
), pp.
463
487
.
33.
Chandrakar
,
V.
,
Mukherjee
,
A.
,
Senapati
,
J. R.
, and
Mohanty
,
A.
,
2022
, “
Conjugate Free Convection With Surface Radiation From Real-Scale IRS System With Multiple Conical Funnels: A Numerical Analysis
,”
Int. Commun. Heat Mass Transf.
,
134
, p.
106004
.
34.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
35.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluid Eng.
,
116
(
3
), pp.
405
413
.
36.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.
37.
E
,
E. R. G.
, and
A
,
D.
,
1952
, “
Investigation of Free-Convection Heat Transfer in Vertical
,”
Natl. Advis. Committe Aeronaut. Rep.
,
1211
, pp.
83
95
.
38.
Saedodin
,
S.
, and
Motaghedi Barforoush
,
M. S.
,
2015
, “
Experimental and Numerical Investigations on Enclosure Pressure Effects on Radiation and Convection Heat Losses From Two Finite Concentric Cylinders Using Two Radiation Shields
,”
Energy
,
90
, pp.
652
662
.
You do not currently have access to this content.