Abstract

The study focuses on the experimental and numerical investigations on the cooling of seven protruding asymmetric integrated circuit (IC) chips arranged optimally at various positions in a switch mode power supply (SMPS) board. The chips are cooled under the laminar forced convection mode using the hybrid cooling technique (liquid cold plate integrated with the heat sinks). Fifteen heat sink cases (combinations) are considered for the analysis with the goal to keep the IC chip’s temperature under the safe limit (less than 100 °C). Variable power (heat) inputs to the IC chips along with a water flow rate of 0.5 kg/s (corresponding to the velocity of 4 m/s) inside the liquid cold plate are considered for the analysis. The heat sinks absorb the heat dissipated from the IC chips and reduce their temperature substantially by enhancing their heat removal rate up to 32%. The convection contribution of the IC chips has also improved by 62% using the heat sinks. Hence, hybrid cooling is found to be an effective technique for the temperature control of the IC chips. Numerical analyses are also carried out using the ansys fluent (v r16) to support the experiments. Both the results agree with each other in the error band of 6–12%.

References

1.
Pfahl
,
R. C.
, and
Mcelroy
,
J.
,
2005
, “
The 2004 International Electronics Manufacturing Initiative (iNEMI) Technology Road Maps
,”
2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis
,
Shanghai, China
,
June 27–29
, pp.
1
7
.
2.
Patil
,
N. G.
, and
Hotta
,
T. K.
,
2018
, “
Role of Working Fluids on the Cooling of Discrete Heated Modules: A Numerical Approach
,”
Sadhana—Acad. Proc. Eng. Sci.
,
43
(
187
), pp.
1
9
.
3.
Pedram
,
M.
, and
Nazarian
,
S.
,
2006
, “
Thermal Modeling, Analysis, and Management in VLSI Circuits: Principles and Methods
,”
Proc. IEEE
,
94
(
8
), pp.
1487
1501
.
4.
Lee
,
J. J.
,
Kim
,
H. J.
, and
Kim
,
D. K.
,
2019
, “
Experimental Study on Forced Convection Heat Transfer From Plate-Fin Heat Sinks With Partial Heating
,”
Processes
,
7
(
10
), pp.
772
790
.
5.
Chu
,
R.
,
2017
, “
The Challenges of Electronic Cooling Past, Current and Future
,”
ASME J. Electron. Packag.
,
126
(
4
), pp.
491
500
.
6.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
7.
Wang
,
X.
,
An
,
B.
, and
Xu
,
J.
,
2013
, “
Optimal Geometric Structure for Nanofluid-Cooled Microchannel Heat Sink Under Various Constraint Conditions
,”
Energy Convers. Manag.
,
65
, pp.
528
538
.
8.
Neyestani
,
M.
,
Nazari
,
M.
,
Shahmardan
,
M. M.
,
Sharifpur
,
M.
,
Ashouri
,
M.
, and
Meyer
,
J. P.
,
2019
, “
Thermal Characteristics of CPU Cooling by Using a Novel Porous Heat Sink and Nano-Fluids
,”
J. Therm. Anal. Calorim.
,
138
(
1
), pp.
805
817
.
9.
Liu
,
H.
,
Qi
,
D.
,
Shao
,
X.
, and
Wang
,
W.
,
2019
, “
An Experimental and Numerical Investigation of Heat Transfer Enhancement in Annular Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
142
, pp.
106
120
.
10.
Dede
,
E. M.
,
2015
, “
Optimization and Design of a Multipass Branching Microchannel Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041001
.
11.
Chen
,
C.
, and
Ding
,
C.
,
2011
, “
Study on the Thermal Behavior and Cooling Performance of a Nano Fluid-Cooled Micro-Channel Heat Sink
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
378
384
.
12.
Acikalin
,
T.
, and
Schroeder
,
C.
,
2014
, “
Direct Liquid Cooling of Bare Die Packages Using a Micro-Channel Cold Plate
,”
14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Orlando, FL
,
May 27–30
.
13.
Van Erp
,
R.
,
Kampitsis
,
G.
, and
Matioli
,
E.
,
2019
, “
A Manifold Micro-Channel Heat Sink for Ultra-High Power Density Liquid-Cooled Converters
,”
IEEE Applied Power Electronics Conference and Exposition (APEC)
,
Anaheim, CA
,
Mar. 17–21
.
14.
Kang
,
S.
,
Miller
,
D.
, and
Cennamo
,
J.
,
2007
, “
Closed Loop Liquid Cooling for High-Performance Computer
,”
ASME Thermal Engineering Heat Transfer Summer Conference
,
British Columbia, Canada
,
July 8–12
.
15.
Patil
,
N. G.
, and
Hotta
,
T. K.
,
2021
, “
Heat Transfer Characteristics of High Heat Generating Integrated Circuit Chips Cooled Using Liquid Cold Plate-A Combined Numerical and Experimental Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
1
), p.
011019
.
16.
Wei
,
X.
,
Joshi
,
Y.
, and
Patterson
,
M. K.
,
2007
, “
Experimental and Numerical Study of a Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
10
), pp.
1432
1444
.
17.
Mathew
,
V. K.
, and
Hotta
,
T. K.
,
2021
, “
Performance Enhancement of High Heat Generating IC Chips Using Paraffin Wax Based Mini-Channel—A Combined Experimental and Numerical Approach
,”
Int. J. Therm. Sci.
,
164
, p.
106865
.
18.
Mathew
,
V. K.
, and
Hotta
,
T. K.
,
2019
, “
Role of PCM Based Mini-Channels for the Cooling of Multiple Protruding IC Chips on the SMPS Board-A Numerical Study
,”
J. Energy Storage
,
26
, p.
100917
.
19.
Zhou
,
F.
,
Dede
,
E.
, and
Joshi
,
S.
,
2015
, “
A Novel Design of Hybrid Slot Jet and Mini-Channel Cold Plate for Electronics Cooling
,”
31st IEEE Thermal Measurement, Modeling & Management Symposium (SEM-THREM)
,
San Jose, CA
,
Mar. 15–19
.
20.
Chu
,
R.
,
Simons
,
R.
,
Ellsworth
,
M.
,
Schmidt
,
R.
, and
Cozzolino
,
V.
,
2004
, “
Review of Cooling Technologies for Computer Products
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
568
585
.
21.
Patil
,
N. G.
, and
Hotta
,
T. K.
,
2018
, “
A Review on Cooling of Discrete Heated Modules Using Liquid Jet Impingement
,”
Front. Heat Mass Transfer
,
11
, pp.
16
26
.
22.
Delia
,
D.
,
Gilgert
,
T.
,
Hwang
,
U.
,
Ing
,
P.
,
Kemink
,
R.
,
Moran
,
K.
,
Reyes
,
J.
,
Schmidt
,
R.
, and
Steinbrecher
,
R.
,
1992
, “
System Cooling Design for the IBM Enterprise System/9000 Processors
,”
IBM J. Res. Dev.
,
36
(
4
), pp.
791
803
.
23.
Ge
,
Y.
,
Shan
,
F.
, and
Liu
,
Z.
,
2017
, “
Optimal Structural Design of a Heat Sink With Laminar Single-Phase Flow Using CFD Based Multi-Objective Genetic Algorithm
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
2
), p.
022803
.
24.
Xiang
,
J.
,
Deng
,
L.
,
Zhou
,
C.
,
Zhao
,
H.
,
Huang
,
J.
, and
Tao
,
S.
,
2022
, “
Heat Transfer Performance and Structural Optimization of a Novel Microchannel Heat Sink
,”
Chin. J. Mech. Eng.
,
35
(
1
), p.
38
.
25.
Patil
,
N. G.
, and
Hotta
,
T. K.
,
2020
, “
A Combined Numerical Simulation and Optimization Model for the Cooling of IC Chips Under Forced Convection
,”
Int. J. Mod. Phys. C
,
31
(
6
), p.
2050081
.
26.
Venkateshan
,
S. P.
,
2008
,
Mechanical Measurements
,
Ane Books
,
New Delhi
.
You do not currently have access to this content.