Abstract

In this paper, the endwall film cooling and vane pressure side surface phantom cooling performances of a first nozzle guide vane (NGV) with endwall contouring, similar to an industry gas turbine, were experimentally and numerically evaluated at the simulated realistic gas turbine operating conditions (high inlet freestream turbulence level of 16%, exit Mach number of 0.85, and exit Reynolds number of 1.7 × 106). A novel numerical method for the predictions of adiabatic wall film cooling effectiveness was proposed based on a double coolant temperature model. The credibility and accuracy of this numerical method were validated by comparing the predicted results with experimental data. Results indicate that the present numerical method can accurately predict endwall film cooling performance and vane surface phantom cooling performance for both the ideal low density ratio (DR = 1.2) and the typical high density ratio (DR = 2.0) conditions. The endwall film cooling effectiveness, vane surface phantom cooling effectiveness, and secondary flow field were compared and analyzed for the axisymmetric convergent contoured endwall at three coolant injection angles (small injection angle of θ = 40 deg, design injection angle of θ = 50 deg, large injection angle of θ = 60 deg), two density ratios (low density ratio of DR = 1.2 and typical high density ratio of DR = 2.0), and the design blowing ratio (M = 2.5), based on the commercial CFD solver ansys fluent. An analysis method of the coolant momentum flux φ (decomposed into the axial component φx and vertical component φz) was proposed to describe and explain the migration and mixing mechanisms of coolant flow. Results indicate that the proposed analysis method of the coolant momentum flux φ can accurately and reliably describe and explain the coolant flow physics, including the coolant lift-off, the interaction between the coolant and the mainstream, and the coolant migration in the vane passage. The increased coolant injection angles result in a deterioration of the endwall film cooling performance and vane pressure surface side phantom cooling performance. Nevertheless, the sensitivity of endwall film cooling effectiveness and phantom cooling effectiveness to coolant injection angles is variable, and is significantly affected by density ratio. This suggests that the coupling effects of the coolant injection angles and density ratio should be taken into account for the prediction of endwall film cooling and phantom cooling performances. It is very necessary for the optimized design of the coolant injection angles and the predictions of film cooling performance at the realistic density ratio.

References

1.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME Paper No. GT-2017-63205
.
2.
Han
,
J. C.
,
2016
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
3.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
4.
Foster
,
N. W.
, and
Lampard
,
D.
,
1984
, “
The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes
,”
ASME J. Eng. Power
,
102
(
3
), pp.
584
588
.
5.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1997
, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Injection
,”
ASME J. Turbomach.
,
119
(
2
), pp.
352
358
.
6.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
7.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1999
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
765
.
8.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2003
, “
Film Cooling Characteristics of a Single Round Hole at Various Streamwise Angles in a Crossflow—Part I: Effectiveness
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
221
235
.
9.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow—II. Heat Transfer Coefficients
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4995
5016
.
10.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J. C.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angles
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
.
11.
El-Gabry
,
L.
,
Xu
,
H.
,
Liu
,
K.
,
Chang
,
J.
, and
Fox
,
M.
,
2018
, “
Effect of Coolant Injection Angle on Nozzle Endwall Film Cooling: Experimental and Numerical Analysis in Linear Cascade
,” ASME Paper No. GT2018-75877.
12.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2011
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
13.
Andrei
,
L.
,
Facchini
,
B.
,
Caciolli
,
G.
,
Picchi
,
A.
,
Tarchi
,
L.
,
D’Ercole
,
M.
,
Innocenti
,
L.
, and
Russo
,
A.
,
2014
, “
Performance Improvement of a Heavy Duty GT: Adiabatic Effectiveness Measurements on First Stage Vanes in Representative Engine Conditions
.” ASME Paper No. GT2014-26894.
14.
Ito
,
S.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
J. Eng. Power
,
100
(
3
), pp.
476
481
.
15.
Liu
,
K.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Influence of Coolant Density on Turbine Platform Film-Cooling With Stator–Rotor Purge Flow and Compound-Angle Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041007
.
16.
Shiau
,
C. C.
,
Chen,
A. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2016
, “
Full-Scale Turbine Vane Endwall Film-Cooling Effectiveness Distribution Using Pressure-Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(
5
), p.
051002
.
17.
Zhang
,
L. Z.
,
Yin
,
J.
,
Liu
,
K. V.
, and
Hee-Koo
,
M.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
.” ASME Paper No. GT2015-42541.
18.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2017
, “
Influence of The Upstream Slot Geometry on the Endwall Cooling and Phantom Cooling of Vane Suction Side Surface
,”
J. Appl. Therm. Eng.
,
121
(
5
), pp.
688
700
.
19.
Zhang
,
Y.
, and
Yuan
,
X.
,
2012
, “
Experimental Investigation of Turbine Phantom Cooling on Suction Side With Combustor-Turbine Leakage Gap Flow and Endwall Film Cooling
.” ASME Paper No. GT2012-69295.
20.
Nix
,
A. C.
,
Smith
,
A. C.
,
Diller
,
T. E.
,
Ng
,
W. F.
, and
Thole
,
K. A.
,
2002
, “
High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Turbine Cascade
.” ASME Paper No. GT2002-30523.
21.
Cook
,
W. J.
, and
Felderman
,
E. J.
,
1966
, “
Reduction of Data From Thin-Film Heat-Transfer Gauges: A Concise Numerical Technique
,”
AIAA J.
,
4
(
3
), pp.
561
562
.
22.
Arisi
,
A.
,
Phillips
,
J.
,
Ng
,
W. F.
,
Xue
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade With Purge Flow
,”
ASME J. Turbomach.
,
138
(
10
), p.
101007
.
23.
Abraham
,
S.
,
Panchal
,
K.
,
Xue
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Brown
,
B. J.
, and
Malandra
,
A.
,
2010
, “
Experimental and Numerical Investigations of a Transonic, High Turning Turbine Cascade With a Divergent Endwall
,”
ASME Paper No. FEDSM-ICNMM-2010-30393
.
24.
Li
,
Z.
,
Liu
,
L.
,
Li
,
J.
,
Sibold
,
R. A.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2018
, “
Effects of Upstream Step Geometry on Axisymmetric Converging Vane Endwall Secondary Flow and Heat Transfer at Transonic Conditions
,”
ASME J. Turbomach.
,
110
(
12
), p.
121008
.
25.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 1—Effect of Density Ratio
,”
ASME J. Turbomach.
,
144
(
5
), p.
051003
.
26.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2020
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling: Part 2—Effect of Combustor-NGV Misalignment
,”
ASME J. Turbomach.
,
144
(
5
), p.
051004
.
27.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
28.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.
29.
Li
,
Z.
,
Bai
,
B.
,
Li
,
J.
,
Mao
,
S.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Endwall Heat Transfer and Cooling Performance of a Transonic Turbine Vane With Upstream Injection Flow
,”
ASME J. Turbomach.
,
144
(
4
), p.
041004
.
30.
Lu
,
K.
,
Rezasoltani
,
M.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2014
, “
A Combined Numerical and Experimental Study of the Effect of Non-Axisymmetric Contouring on Performance and Film Cooling Behavior of a Rotating Turbine Endwall
.” ASME Paper No. GT2014-25659.
31.
Ornano
,
F.
, and
Povey
,
T.
,
2017
, “
Experimental and Computational Study of the Effect of Momentum-Flux Ratio on High-Pressure Nozzle Guide Vane Endwall Cooling Systems
,”
ASME J. Turbomach.
,
139
(
12
), p.
121002
.
32.
Arisi
,
A.
,
Mayo
,
D.
,
Li
,
Z.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Investigation of the Effect of Combustor-Nozzle Platform Misalignment on Endwall Heat Transfer at Transonic High Turbulence Conditions
.” ASME Paper No. GT2016-57763.
33.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First-Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.
34.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2003
, “
Computational Predictions of Endwall Film-Cooling for a First Stage Vane
.” ASME Paper No. GT2003-38252.
You do not currently have access to this content.