Abstract

A numerical study is performed to investigate the effect of buoyancy on the cooling performance of leading edge cooling of a rotating turbine blade under the real operating condition at baseload. The Double swirl cooling (DSC) configuration is simulated using the shear stress transport (SST) k-ω turbulence model that proves to be the most accurate for impinging flow under rotating condition due to its lowest averaged second norm. The numerical results reveal that the DSC cooling performance is deteriorated by buoyancy because the total average Nusselt number and the thermal performance factor of DSC with buoyancy effect are significantly lower than those of DSC without buoyancy effect. This points out that the buoyancy effect is a very important parameter to be concerned in the numerical study of leading edge cooling of a rotating turbine blade due to its great influence on the cooling performance and heat transfer distribution.

References

1.
Han
,
J. C.
, and
Huh
,
M.
,
2010
, “
Recent Studies in Turbine Blade Internal Cooling
,”
Heat Transf. Res.
,
41
(
8
), pp.
803
828
.
2.
Sharma
,
C.
,
Kumar
,
S.
,
Singh
,
A.
,
Hire
,
K. R.
,
Karnatak
,
V.
,
Pandey
,
V.
,
Gupta
,
J.
,
Shrimali
,
R.
,
Singh
,
S.
,
Noorsha
,
S. S.
, and
Gundabattini
,
E.
,
2021
, “
Comprehensive Review on Leading Edge Turbine Blade Cooling Technologies
,”
Int. J. Heat Technol.
,
39
(
2
), pp.
403
416
.
3.
Yeranee
,
K.
, and
Rao
,
Y.
,
2021
, “
A Review of Recent Studies on Rotating Internal Cooling for Gas Turbine Blades
,”
Chin. J. Aeronaut.
,
34
(
7
), pp.
85
113
.
4.
Chupp
,
R. E.
,
Helms
,
H. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficient for Impingement Cooled Turbine Airfoils
,”
J. Aircr.
,
6
(
3
), pp.
203
208
.
5.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.
6.
Metzger
,
D. E.
, and
Bunker
,
R. S.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part II—Impingement Cooling with Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
459
466
.
7.
Du
,
C.
,
Li
,
L.
,
Wu
,
X.
, and
Feng
,
Z.
,
2016
, “
Effect of Jet Nozzle Geometry on Flow and Heat Transfer Performance of Vortex Cooling for Gas Turbine Blade Leading Edge
,”
Appl. Therm. Eng.
,
93
, pp.
1020
1032
.
8.
Wang
,
N.
, and
Han
,
J. C.
,
2019
, “
Swirl Impinging Cooling on an Airfoil Leading Edge Model at Large Reynolds Number
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031006
.
9.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2000
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
(
1
), pp.
147
153
.
10.
Kusterer
,
K.
,
Lin
,
G.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2013
, “
Heat Transfer Enhancement for Gas Turbine Internal Cooling by Application of Double Swirl Cooling Chambers
,”
Proceedings of ASME Turbo Expo 2013
,
San Antonio, TX
,
June 3–7
, ASME Paper No. GT2013-94774.
11.
Lin
,
G.
,
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2013
, “
Investigation on Heat Transfer Enhancement and Pressure Loss of Double Swirl Chambers Cooling
,”
Propul. Power Res.
,
2
(
3
), pp.
177
187
.
12.
Hay
,
N.
, and
West
,
P. D.
,
1975
, “
Heat Transfer in Free Swirling Flow in a Pipe
,”
ASME J. Heat Transfer-Trans. ASME
,
97
(
3
), pp.
411
416
.
13.
Lin
,
G.
,
Kusterer
,
K.
,
Ayed
,
A. H.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2015
, “
Numerical Investigation on Heat Transfer in an Advanced New Leading Edge Impingement Cooling Configuration
,”
Propul. Power Res.
,
4
(
4
), pp.
179
189
.
14.
Zhou
,
J.
,
Wang
,
X.
,
Li
,
J.
, and
Hou
,
W.
,
2018
, “
Effects of Target Channel Shapes on Double Swirl Cooling Performance at Gas Turbine Blade Leading Edge
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071004
.
15.
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P.
,
2014
, “
Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage
,”
Int. J. Heat Mass Transfer
,
71
, pp.
57
68
.
16.
Wang
,
J.
,
Liu
,
J.
,
Wang
,
L.
,
Sunden
,
B.
, and
Wang
,
S.
,
2018
, “
Conjugated Heat Transfer Investigation With Racetrack-Shaped Jet Hole and Double Swirling Chamber in Rotating Jet Impingement
,”
Numer. Heat Transfer, Part A
,
73
(
11
), pp.
768
787
.
17.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2006
, “
Rotational Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45 Degree Ribbed Walls
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
11
), pp.
1130
1141
.
18.
Li
,
Y.
,
Xu
,
G.
,
Deng
,
H.
, and
Tian
,
S.
,
2014
, “
Buoyancy Effect on Heat Transfer in Rotating Smooth Square U-Duct at High Rotation Number
,”
Propul. Power Res.
,
3
(
3
), pp.
107
120
.
19.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy Res. Technol.
,
141
(
11
), p.
112001
.
20.
Elston
,
C. A.
, and
Wright
,
L. M.
,
2017
, “
Leading Edge Jet Impingement Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021010
.
21.
Massini
,
D.
,
Burberi
,
E.
,
Carcasci
,
C.
,
Cocchi
,
L.
,
Facchini
,
B.
,
Armellini
,
A.
,
Casarsa
,
L.
, and
Furlani
,
L.
,
2017
, “
Effect of Rotation on a Gas Turbine Blade Internal Cooling System: Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
101902
.
22.
Cocchi
,
L.
,
Facchini
,
B.
, and
Picchi
,
A.
,
2019
, “
Heat Transfer Measurements in Leading-Edge Cooling Geometry Under Rotating Conditions
,”
J. Thermophys. Heat Transfer
,
33
(
3
), pp.
844
855
.
23.
Deng
,
H.
,
Li
,
H.
, and
Xu
,
J.
,
2022
, “
Heat Transfer in an Impingement Cooling Channel Under Isothermal Boundaries at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
182
, p.
121940
.
24.
Fan
,
X.
,
Li
,
L.
,
Zou
,
J.
, and
Zhou
,
Y.
,
2019
, “
Cooling Methods for Gas Turbine Blade Leading Edge: Comparative Study on Impingement Cooling, Vortex Cooling and Double Vortex Cooling
,”
Int. Commun. Heat Mass Transfer
,
100
, pp.
133
145
.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
26.
Wilcox
,
D. C.
,
1998
, “
Turbulence Modeling for CFD
,” DCW Industries.
27.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
28.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
29.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Paper No. AIAA-92-0439
.
30.
Li
,
H. L.
,
Chiang
,
H. W. D.
, and
Hsu
,
C. N.
,
2011
, “
Jet Impingement and Forced Convection Cooling Experimental Study in Rotating Turbine Blades
,”
Int. J. Turbo Jet Engines
,
28
(
2
), pp.
147
158
.
31.
Zhang
,
D.
,
Jiang
,
C.
,
Liang
,
D.
, and
Cheng
,
L.
,
2015
, “
A Review on TVD Schemes and a Refined Flux-Limiter for Steady-State Calculations
,”
J. Comput. Phys.
,
302
, pp.
114
154
.
32.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.