Abstract

A three-dimensional (3D) numerical model of the double-tubes heat exchanger was established by using fluent16.0 in this study. The supercritical flow and heat transfer characteristics of R744 and its two azeotropic blends in the gas cooler and their performance in the single-stage compression heat pump were investigated. The results showed that the peak value of the heat transfer capabilities of R744 was the highest, and that of R744/R170 was the lowest. With the increase in the pressure, the peak value of the heat transfer capabilities decreased, and the bulk temperature corresponding to the peak value of the heat transfer capabilities also increased. Moreover, the temperature of R744/R170 at the same position near the outlet of the tube section was lower under the different working conditions, which would be conducive in increasing the coefficient of performance (COP) of the system. Lastly, when R744 and its two azeotropic blends were employed in the single-stage compression heat pump system, the difference of COP between R744/R170 and R744 decreased with the increase of the outlet temperature in the gas cooler, and the difference of COP between R744/R41 and R744 increased.

References

1.
Lorentzen
,
G.
,
1994
, “
Revival of Carbon Dioxide as a Refrigerant
,”
Int. J. Refrig.
,
17
(
5
), pp.
292
301
.
2.
Padrela
,
L.
,
Rodrigues
,
M. A.
,
Velaga
,
S. P.
,
Matos
,
H. A.
, and
de Azevedo
,
E. G.
,
2009
, “
Formation of Indomethacin-Saccharin Cocrystals Using Supercritical Fluid Technology
,”
Eur. J. Pharm. Sci.
,
38
(
1
), pp.
9
17
.
3.
Li
,
H. Z.
,
Kruizenga
,
A.
,
Anderson
,
M.
,
Corradini
,
M.
,
Luo
,
Y. S.
,
Wang
,
H. J.
, and
Li
,
H. X.
,
2011
, “
Development of a New Forced Convection Heat Transfer Correlation for CO2 in Both Heating and Cooling Modes at Supercritical Pressures
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2430
2442
.
4.
Li
,
F. W.
, and
Li
,
Z. Z.
,
2014
, “
Supercritical Fluid Technology and Application Status
,”
I. Mn. Petro. Indus.
,
23
, pp.
92
94
.
5.
Aizpurua-Olaizola
,
O.
,
Ormazabal
,
M.
,
Vallejo
,
A.
,
Olivares
,
M.
,
Navarro
,
P.
,
Etxebarria
,
N.
, and
Usobiaga
,
A.
,
2015
, “
Optimization of Supercritical Fluid Consecutive Extractions of Fatty Acids and Polyphenols From Vitis Vinifera Grape Wastes
,”
J. Food Sci.
,
80
(
1
), pp.
E101
E107
.
6.
Satyakam
,
R.
, and
Malhotra
,
A.
,
2000
, “
Influence of Climatic Parameters on Optimal Design of Supercritical Power Plants
,”
Proceedings of the IECEC
,
Las Vegas, NV
,
July 24–28
, Paper No. 00CH37022, pp.
1053
1058
.
7.
Shiralkar
,
B. S.
, and
Griffith
,
P.
,
1969
, “
Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Heat Fluxes
,”
ASME J. Heat Transfer-Trans. ASME
,
91
(
1
), pp.
27
36
.
8.
Adebiyi
,
G. A.
, and
Hall
,
W. B.
,
1976
, “
Experimental Investigation of Heat Transfer to Supercritical Pressure Carbon Dioxide in a Horizontal Pipe
,”
Int. J. Heat Mass Transfer
,
19
(
7
), pp.
715
720
.
9.
Lei
,
X. L.
,
Zhang
,
Q.
,
Zhang
,
J.
, and
Li
,
H. X.
,
2017
, “
Experimental and Numerical Investigation of Convective Heat Transfer of Supercritical Carbon Dioxide at Low Mass Flowes
,”
Appl. Sci.
,
7
(
12
), p.
1260
.
10.
Dang
,
C. B.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide, Experimental Measurement
,”
Int. J. Refrig.
,
27
(
7
), pp.
736
747
.
11.
Dang
,
C. B.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide, Comparison of Numerical Calculation With Different Turbulence Models
,”
Int. J. Refrig.
,
27
(
7
), pp.
748
760
.
12.
Yu
,
B. B.
,
Wang
,
D. D.
,
Liu
,
C. C.
,
Jiang
,
F. Z.
,
Shi
,
J. Y.
, and
Chen
,
J. P.
,
2018
, “
Performance Improvements Evaluation of an Automobile Air Conditioning System Using CO2/Propane Mixture as a Refrigerant
,”
Int. J. Refrig.
,
88
, pp.
172
181
.
13.
Yu
,
B. B.
,
Yang
,
J. Y.
,
Wang
,
D. D.
,
Shi
,
J. Y.
,
Guo
,
Z. K.
, and
Chen
,
J. P.
,
2019
, “
Experimental Energetic Analysis of CO2/R41 Blends in Automobile Air-Conditioning and Heat Pump Systems
,”
Appl. Energy
,
239
, pp.
1142
1153
.
14.
Wang
,
D.
,
Lu
,
Y. H.
, and
Tao
,
L. R.
,
2017
, “
Thermodynamic Analysis of CO2 Blends With R41 as an Azeotropy Refrigerant Applied in Small Refrigerated Cabinet and Heat Pump Water Heater
,”
Appl. Therm. Eng.
,
125
, pp.
1490
1500
.
15.
Wang
,
D.
,
Liu
,
Y. R.
,
Kou
,
Z. L.
,
Yao
,
L. F.
,
Lu
,
Y. H.
,
Tao
,
L. R.
, and
Xia
,
P.
,
2019
, “
Energy and Exergy Analysis of an Air-Source Heat Pump Water Heater System Using CO2/R170 Mixture as an Azeotropy Refrigerant for Sustainable Development
,”
Int. J. Refrig.
,
106
, pp.
628
638
.
16.
Kravanja
,
G.
,
Zajc
,
G.
,
Knez
,
Z.
,
Skerget
,
M.
,
Marcic
,
S.
, and
Knez
,
M. H.
,
2018
, “
Heat Transfer Performance of CO2, Ethane and Their Azeotropic Mixture Under Supercritical Conditions
,”
Energy
,
152
, pp.
190
201
.
17.
Sun
,
Z. L.
,
Cui
,
Q.
,
Wang
,
Q. F.
,
Ning
,
J. H.
,
Guo
,
J. H.
,
Dai
,
B. M.
,
Liu
,
Y. Q.
, and
Xu
,
Y. B.
,
2019
, “
Experimental Study on CO2/R32 Blends in a Water-to-Water Heat Pump System
,”
Appl. Therm. Eng.
,
162
, p.
114303
.
18.
Maczek
,
K.
,
Muller
,
J.
, and
Wojtas
,
K.
,
1997
, “
Ternary Zeotropic Mixture With CO2 Component for R22 Heat Pump Application
,”
Proceedings of the CLIMA
,
Brussels, Belgium
,
January
, pp.
1
9
.
19.
Kim
,
J. H.
,
Cho
,
J. M.
, and
Kim
,
M. S.
,
2008
, “
Cooling Performance of Several CO2/Propane Mixtures and Glide Matching With Secondary Heat Transfer Fluid
,”
Int. J. Refrig.
,
31
(
5
), pp.
800
806
.
20.
Koyama
,
S.
,
Jin
,
D. X.
, and
Xue
,
J.
,
2007
, “
Experimental Study on the Performance of a CO2/DME System
,”
Proceedings of the JSRAE
,
Beijing, China
,
January
, p.
986
.
21.
Cho
,
J. M.
,
Kim
,
Y. J.
, and
Kim
,
M. S.
,
2010
, “
Experimental Studies on the Characteristics of Evaporative Heat Transfer and Pressure Drop of CO2/Propane Mixtures in Horizontal and Vertical Smooth and Micro-Fin Tubes
,”
Int. J. Refrig.
,
33
(
1
), pp.
170
179
.
22.
Onaka
,
Y.
,
Miyara
,
A.
, and
Tsubaki
,
K.
,
2010
, “
Experimental Study on Evaporation Heat Transfer of CO2/DME Mixture Refrigerant in a Horizontal Smooth Tube
,”
Int. J. Refrig.
,
33
(
7
), pp.
1277
1291
.
23.
Zhu
,
Y.
,
Wu
,
X. M.
, and
Wei
,
Z. F.
,
2015
, “
Heat Transfer Characteristics and Correlation for CO2/Propane Mixtures Flow Evaporation in a Smooth Mini Tube
,”
Appl. Therm. Eng.
,
81
, pp.
253
261
.
24.
Afroz
,
H. M. M.
,
Miyara
,
A.
, and
Tsubaki
,
K.
,
2008
, “
Heat Transfer Coefficients and Pressure Drops During In-Tube Condensation of CO2/DME Mixture Refrigerant
,”
Int. J. Refrig.
,
31
(
8
), pp.
1458
1466
.
25.
Zhang
,
H. L.
,
Wu
,
H. M.
,
Liu
,
D.
,
Li
,
S.
, and
Li
,
Q.
,
2020
, “
Experimental Investigations on Heat Transfer to H2O/CO2 Mixtures in Supercritical Region
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104706
.
26.
Yun
,
R.
,
Hwang
,
H.
, and
Radermacher
,
R.
,
2007
, “
Convective Gas Cooling Heat Transfer and Pressure Drop Characteristics of Supercritical CO2/Oil Mixture in a Minichannel Tube
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4796
4804
.
27.
Dai
,
B. M.
,
Dang
,
C. B.
,
Li
,
M. X.
,
Tian
,
H.
, and
Ma
,
Y. T.
,
2015
, “
Thermodynamic Performance Assessment of Carbon Dioxide Blends With Low-Global Warming Potential (GWP) Working Fluids for a Heat Pump Water Heater
,”
Int. J. Refrig.
,
56
(
7
), pp.
1
14
.
28.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2009
, “
Assessment of Blends of CO2 With Butane and Isobutane as Working Fluids for Heat Pump Applications
,”
Int. J. Therm. Sci.
,
48
(
7
), pp.
1460
1465
.
29.
Hakkaki-Fard
,
A.
,
Aidoun
,
Z.
, and
Ouzzane
,
M.
,
2014
, “
Applying Refrigerant Mixtures With Thermal Glide in Cold Climate Air-Source Heat Pumps
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
714
722
.
30.
Ju
,
F. J.
,
Fan
,
X. W.
,
Chen
,
Y. P.
,
Ouyang
,
H. P.
,
Kuang
,
A.
,
Ma
,
S. F.
, and
Wang
,
F.
,
2018
, “
Experiment and Simulation Study on Performances of Heat Pump Water Heater Using Blend of R744/R290
,”
Energy Build.
,
169
, pp.
148
156
.
You do not currently have access to this content.