Abstract

This paper presents a multi-condition design method for the aircraft heat exchanger (HEX), marking with lightweight, compactness, and wide range of working conditions. The quasi-traversal genetic algorithm (QT-GA) method is introduced to obtain the optimal values of five structural parameters including the height, the tube diameter, the tube pitch, and the tube rows. The QT-GA method solves the deficiency of the conventional GA in the convergence, and gives a clear correlation between design variables and outputs. Pressure drops, heat transfer, and the weight of the HEX are combined in a single objective function of GA in the HEX design, thus the optimal structure of the HEX suitable for all the working conditions can be directly obtained. After optimization, the weight of the HEX is reduced to 2.250 kg, more than 20% lower than a common weight of around 3 kg. Based on the optimal structure, the off-design performance of the HEX is further analyzed. Results show that the extreme working conditions for the heat transfer and the pressure drops are not consistent. It proves the advance of the multi-condition design method over the traditional single-condition design method. In general, the proposed QT-GA design method is an efficient way to solve the multi-condition problems related to the aircraft HEX or other energy systems.

References

1.
Mahefkey
,
T.
,
Yerkes
,
K.
,
Donovan
,
B.
, and
Ramalingam
,
M. L.
,
2004
, “
Thermal Management Challenges for Future Military Aircraft Power Systems
,”
Power Systems Conference
,
Reno, NE
,
Nov. 2–4
, SAE Paper No. 2004-01-3204.
2.
Kyprianidis
,
K.
,
Gronstedt
,
T.
,
Ogaji
,
S. O. T.
,
Pilidis
,
P.
, and
Singh
,
R.
,
2011
, “
Assessment of Future Aero Engine Designs With Intercooled and Intercooled Recuperated Cores
,”
ASME Turbo Expo: Power for Land, Sea, & Air
,
Glasgow, UK
,
June 14–18, 2010
, ASME Paper No. GT2010-23621.
3.
Xu
,
L.
,
Kyprianidis
,
K.
, and
Gronstedt
,
T.
,
2013
, “
Optimization Study of an Intercooled Recuperated Aero-Engine
,”
J. Propul. Power
,
29
(
2
), pp.
424
432
.
4.
Misirlis
,
D.
,
Vlahostergios
,
Z.
,
Flouros
,
M.
,
Salpingidou
,
C.
,
Donnerhack
,
S.
,
Goulas
,
A.
, and
Yakinthos
,
K.
,
2017
, “
Optimization of Heat Exchangers for Intercooled Recuperated Aero Engines
,”
Aerospace
,
4
(
1
), p.
14
.
5.
Goulas
,
A.
,
Donnerhack
,
S.
,
Flouros
,
M.
,
Misirlis
,
D.
,
Vlahostergios
,
Z.
, and
Yakinthos
,
K.
,
2015
, “
Thermodynamics Cycle Analysis, Pressure Loss, and Heat Transfer Assessment of a Recuperative System for Aero-Engines
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
021405
.
6.
Salpingidou
,
C.
,
Vlahostergios
,
Z.
,
Misirlis
,
D.
,
Donnerhack
,
S.
,
Flouros
,
M.
,
Goulas
,
A.
, and
Yakinthos
,
K.
,
2017
, “
Thermodynamic Analysis of Recuperative Gas Turbines and Aero Engines
,”
Appl. Therm. Eng.
,
124
, pp.
250
260
.
7.
Dellenback
,
P. A.
,
2006
, “
A Reassessment of the Alternative Regeneration Cycle
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
783
788
.
8.
Schönenborn
,
H.
,
Ebert
,
E.
,
Simon
,
B.
, and
Storm
,
P.
,
2004
, “
Thermomechanical Design of a Heat Exchanger for a Recuperative Aero Engine
,”
ASME Turbo Expo, Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
, ASME Paper No. GT2004-53696.
9.
Bruening
,
G. B.
, and
Chang
,
W. S.
,
1999
, “
Cooled Cooling Air Systems for Turbine Thermal Management
,”
Proceedings of the ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
,
Indianapolis, IN
,
June 7–10
, ASME Paper No. 99-GT-14.
10.
Kim
,
N. H.
,
Cho
,
J. R.
, and
Ra
,
Y. J.
,
2018
, “
Structural Integrity Analysis and Evaluation of Cooled Cooling Air Heat Exchanger for Aero Engine
,”
Int. J. Precis. Eng. Manuf.
,
19
(
4
), pp.
529
535
.
11.
Kim
,
C. S.
,
Kim
,
H. J.
,
Cho
,
J. R.
,
Park
,
S. H.
, and
Ha
,
M. Y.
,
2016
, “
Manufacturing and Mechanical Evaluation of Cooled Cooling Air (CCA) Heat Exchanger for Aero Engine
,”
Int. J. Precis. Eng. Manuf.
,
17
(
9
), pp.
1195
1200
.
12.
Mucci
,
A.
,
Kholi
,
F. K.
,
Ha
,
M. Y.
,
Min
,
J. K.
,
Beecroft
,
P.
,
Yoon
,
S. Y.
,
Yun
,
W. G.
, and
Sibilli
,
T.
,
2019
, “
Transient Regime Simulation From Idle to Maximum Take-Off Flight Conditions of Cooled Cooling Air Heat Exchanger for an Aero Gas Turbine Heat Management
,”
Proceedings of the ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
, ASME Paper No. GT2019-90701.
13.
Mucci
,
A.
,
Kholi
,
F. K.
,
Ha
,
M. Y.
,
Min
,
J. K.
,
Beecroft
,
P.
, and
Chatwin
,
J. C.
,
2020
, “
Transient Performance Analysis of an Aero Gas Turbine Cooled Cooling Air Heat Exchanger
,”
ASME J. Eng. Gas Turbines Power
,
142
(
11
), p.
111014
.
14.
Walker
,
A. D.
,
Koli
,
B.
,
Guo
,
L.
,
Beecroft
,
P.
, and
Zedda
,
M.
,
2017
, “
Impact of a Cooled Cooling Air System on the External Aerodynamics of a Gas Turbine Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
051504
.
15.
Spanelis
,
A.
,
Walker
,
A. D.
, and
Beecroft
,
P.
,
2017
, “
The Aerodynamic Design of the Low Pressure Air Delivery Ducts for a Cooled Cooling Air System
,”
Proceedings of the ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
, ASME Paper No. GT2017-63959.
16.
Jimenez
,
J. F.
,
Gironsierra
,
J. M.
,
Insaurralde
,
C.
, and
Seminario
,
M.
,
2007
, “
A Simulation of Aircraft Fuel Management System
,”
Simul. Model. Pract. Theory
,
15
(
5
), pp.
544
564
.
17.
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2018
, “
Thermal Management Systems for Civil Aircraft Engines: Review, Challenges and Exploring the Future
,”
Appl. Sci.
,
8
(
11
), p.
2044
.
18.
Huang
,
H.
,
Spadaccini
,
L. J.
, and
Sobel
,
D. R.
,
2004
, “
Fuel-Cooled Thermal Management for Advanced Aeroengines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
284
293
.
19.
Petley
,
D. H.
, and
Jones
,
S. C.
,
1992
, “
Thermal Management for a Mach 5 Cruise Aircraft Using Endothermic Fuel
,”
J. Aircr.
,
29
(
3
), pp.
384
389
.
20.
Doman
,
D. B.
,
2015
, “
Rapid Mission Planning for Aircraft Thermal Management
,”
AIAA Guidance, Navigation, and Control Conference
,
Kissimmee, FL
,
Jan. 5–9
, pp.
1
19
.
21.
Huang
,
G. P.
,
Doman
,
D. B.
,
Rothenberger
,
M. J.
,
Hencey
,
B.
,
Simio
,
M. P.
,
Tipton
,
A.
, and
Sigthorsson
,
D. O.
,
2019
, “
Dimensional Analysis, Modeling, and Experimental Validation of an Aircraft Fuel Thermal Management System
,”
J. Thermophys. Heat Transfer
,
33
(
4
), pp.
1
11
.
22.
Jain
,
N.
, and
Hencey
,
B. M.
,
2016
, “
Increasing Fuel Thermal Management System Capability via Objective Function Design
,”
American Control Conference
,
Boston, MA
,
July 6–8
, pp.
549
556
.
23.
Pangborn
,
H. C.
,
Hey
,
J. E.
,
Deppen
,
T. O.
,
Alleyne
,
A. G.
, and
Fisher
,
T.
,
2017
, “
Hardware-in-the-Loop Validation of Advanced Fuel Thermal Management Control
,”
J. Thermophys. Heat Trans.
,
31
(
4
), pp.
901
909
.
24.
Rheaume
,
J. M.
, and
Lents
,
C. E.
,
2018
, “
Design and Simulation of a Commercial Hybrid Electric Aircraft Thermal Management System
,”
AIAA 2018-4994, 2018 AIAA/IEEE Electric Aircraft Technologies Symposium
,
Cincinnati, OH
,
July 9–11
, pp.
1
9
.
25.
Zou
,
Z. P.
,
Liu
,
H. X.
,
Tang
,
H. L.
,
Wan
,
M.
,
Wang
,
H. W.
, and
Chen
,
X. L.
,
2015
, “
Precooling Technology Study of Hypersonic Aero-Engine
,”
Acta Aeronaut. Astronaut. Sin.
,
36
(
8
), pp.
2544
2562
.
26.
Sato
,
T.
,
Taguchi
,
H.
,
Kobayashi
,
H.
,
Kojima
,
T.
,
Okai
,
K.
,
Fujita
,
K.
,
Masaki
,
D.
,
Hongo
,
M.
, and
Ohta
,
T.
,
2007
, “
Development Study of Precooled-Cycle Hypersonic Turbojet Engine for Flight Demonstration
,”
Acta Astronaut.
,
61
(
1
), pp.
367
375
.
27.
Varvill
,
R.
,
2010
, “
Heat Exchanger Development at Reaction Engines Ltd
,”
Acta Astronaut.
,
66
(
9–10
), pp.
1468
1474
.
28.
Varvill
,
R.
,
Duran
,
I.
,
Kirk
,
A.
,
Langridge
,
S.
,
Nailard
,
O.
,
Payne
,
R.
, and
Webber
,
H.
,
2019
, “
Sabre Technology Development Status and Update
,”
EUCASS2019-307, 8th European Conference for Aeronautics and Space Sciences (EUCASS)
,
Madrid, Spain
,
July 1–4
, pp.
1
8
.
29.
Rao
,
R. V.
, and
Saroj
,
A.
,
2017
, “
Economic Optimization of Shell-and-Tube Heat Exchanger Using Jaya Algorithm With Maintenance Consideration
,”
Appl. Therm. Eng.
,
116
, pp.
473
487
.
30.
Yang
,
J.
,
Fan
,
A.
,
Liu
,
W.
, and
Jacobi
,
A. M.
,
2014
, “
Optimization of Shell-and-Tube Heat Exchangers Conforming to TEMA Standards With Designs Motivated by Constructal Theory
,”
Energy Convers. Manage.
,
78
, pp.
468
476
.
31.
Li
,
H.
,
Huang
,
H.
,
Xu
,
G.
,
Wen
,
J.
, and
Wu
,
H.
,
2017
, “
Performance Analysis of a Novel Compact Air-Air Heat Exchanger for Aircraft Gas Turbine Engine Using LMTD Method
,”
Appl. Therm. Eng.
,
2017
(
116
), pp.
445
455
.
32.
Wen
,
J.
,
Huang
,
H.
,
Li
,
H.
,
Xu
,
G.
, and
Fu
,
Y.
,
2017
, “
Thermal and Hydraulic Performance of a Compact Plate Finned Tube Air-Fuel Heat Exchanger for Aero-Engine
,”
Appl. Therm. Eng.
,
126
, pp.
920
928
.
33.
Zhukauskas
,
A. A.
,
1966
, “The Convective Heat Transfer in Heat Exchangers,” Institute of Dynamic Physics, Academy of Sciences of the Soviet Socialist Republic of Lithuania.
34.
Wu
,
W. L.
,
2006
,
Boiler and Boiler Room Equipment
, 4th ed.,
China Architecture & Building Press
,
Beijing, China
.
35.
Gosselin
,
L.
,
Tye-Gingras
,
M.
, and
Mathieu-Potvin
,
F.
,
2009
, “
Review of Utilization of Genetic Algorithms in Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2169
2188
.
36.
Selleri
,
T.
,
Najafi
,
B.
,
Rinaldi
,
F.
, and
Colombo
,
G.
,
2013
, “
Mathematical Modeling and Multi-Objective Optimization of a Mini-Channel Heat Exchanger via Genetic Algorithm
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
3
), p.
031013
.
37.
Wong
,
J. Y. Q.
,
Sharma
,
S.
, and
Rangaiah
,
G. P.
,
2016
, “
Design of Shell-and-Tube Heat Exchangers for Multiple Objectives Using Elitist Non-Dominated Sorting Genetic Algorithm with Termination Criteria
,”
Appl. Therm. Eng.
,
93
, pp.
888
899
.
38.
Fettaka
,
S.
,
Thibault
,
J.
, and
Gupta
,
Y.
,
2013
, “
Design of Shell-and-Tube Heat Exchangers Using Multiobjective Optimization
,”
Int. J. Heat Mass Transfer
,
60
(
1
), pp.
343
354
.
39.
Chen
,
X.
,
Jiang
,
M.
,
Xu
,
B.
, and
Cao
,
J.
,
2000
, “
The Application of Elitist Preserved Genetic Algorithms on Fuzzy Controller
,”
Proceedings of the 3rd World Congress on Intelligent Control and Automation
,
Hefei, China
,
June 26–July 2
, pp.
590
592
.
You do not currently have access to this content.