Abstract

This work presents a numerical study on the performance of a stand-alone adsorption cooling system based on the silica gel/water couple driven by hybrid photovoltaic/thermal (PVT) collectors. This system is intended for the conservation of perishable agricultural products which require air-conditioned premises to preserve them. The weather conditions are those of North Africa (Algiers). Considering the above, this paper aims at analyzing the PVT-Adsorption system with energy storage to guarantee a stabilized production and increase the solar coverage. trnsys was used to simulate the system taking into account hourly series of irradiation and ambient temperature covering one year. The performance study reveals that the DualSun PVT hybrid collectors used provide optimal annual production and that the adsorption cooling system offers more reliable production during summer. The temperature difference between the inside and outside of the cooled enclosure balances supply and demand. The loss analysis of the storage device indicates that losses depend, on the one hand, on the interior/exterior temperature difference of the storage tank with more significant values during the summer season. On the other hand, the losses also depend on the volume of the storage tank which was optimized in order to limit the heat exchange with the surroundings.

References

1.
AIE
,
2018
,
World Energy Statistics Edition 2018
,
OCDE
,
Paris
.
2.
Buonomano
,
A.
,
Calise
,
F.
, and
Palombo
,
A.
,
2018
, “
Solar Heating and Cooling Systems by Absorption and Adsorption Chillers Driven by Stationary and Concentrating Photovoltaic/Thermal Solar Collectors: Modelling and Simulation
,”
Renewable Sustainable Energy Rev.
,
82
(
2
), pp.
1874
1908
.
3.
Mortadi
,
M.
, and
El Fadar
,
A.
,
2022
, “
Performance, Economic and Environmental Assessment of Solar Cooling Systems Under Various Climates
,”
Energy Convers. Manage.
,
252
, p.
114993
.
4.
Hasan
,
A. A.
,
Juaidi
,
A.
,
Abdallah
,
R.
,
Salameh
,
T.
,
Ayadi
,
O.
,
Jaradat
,
M.
,
Hammad
,
R. E.
,
Campana
,
P. E.
, and
Aqel
,
O. A.
,
2022
, “
A Review of Solar Thermal Cooling Technologies in Selected Middle East and North African Countries
,”
Sustainable Energy Technol. Assess.
,
54
, p.
102871
.
5.
Balaras
,
C. A.
,
Grossman
,
G.
,
Henning
,
H. M.
,
Ferreira
,
C. A.
,
Podesser
,
E.
, and
Wang
,
L.
,
2007
, “
Solar Air Conditioning in Europe—An Overview
,”
Renewable Sustainable Energy Rev.
,
11
(
2
), pp.
299
314
.
6.
Almasri
,
R. A.
,
Abu-Hamdeh
,
N. H.
,
Esmaeil
,
K. K.
, and
Suyambazhahan
,
S.
,
2022
, “
Thermal Solar Sorption Cooling Systems—A Review of Principle, Technology, and Applications
,”
Alexandria Eng. J.
,
61
(
1
), pp.
367
402
.
7.
El-Sharkawy
,
I. I.
,
Abu-Hamdeh
,
N. H.
,
Esmaeil
,
K. K.
, and
Suyambazhahan
,
S.
,
2014
, “
Potential Application of Solar Powered Adsorption Cooling Systems in the Middle East
,”
Appl. Energy
,
126
, pp.
235
245
.
8.
Sarbu
,
I.
, and
Sebarchievici
,
C.
,
2015
, “
General Review of Solar-Powered Closed Sorption Refrigeration Systems
,”
Energy Convers. Manage.
,
105
, pp.
403
422
.
9.
Liu
,
Y. M.
,
Yuan
,
Z. X.
,
Wen
,
X.
, and
Du
,
C. X.
,
2021
, “
Evaluation on Performance of Solar Adsorption Cooling of Silica Gel and SAPO-34 Zeolite
,”
Appl. Therm. Eng.
,
182
, p.
116019
.
10.
Solanki
,
S. C.
,
Dubey
,
S.
, and
Tiwari
,
A.
,
2009
, “
Indoor Simulation and Testing of Photovoltaic Thermal (PV/T) Air Collectors
,”
Appl. Energy
,
86
(
11
), pp.
2421
2428
.
11.
Zondag
,
H. A.
,
De Vries
,
D. W.
,
Van Helden
,
W. G. J.
,
Van Zolingen
,
R. J. C.
, and
Van Steenhoven
,
A. A.
,
2003
, “
The Yield of Different Combined PV-Thermal Collector Designs
,”
Sol. Energy
,
74
(
3
), pp.
253
269
.
12.
Maghrabie
,
H. M.
,
Mohamed
,
A. S. A.
, and
Salem Ahmed
,
M.
,
2020
, “
Experimental Investigation of a Combined Photovoltaic Thermal System Via Air Cooling for Summer Weather of Egypt
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041022
.
13.
Zondag
,
H. A.
,
2008
, “
Flat-Plate PV-Thermal Collectors and Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
12
(
4
), pp.
891
895
.
14.
Aste
,
N.
,
Leonforte
,
F.
, and
Del Pero
,
C.
,
2015
, “
Design, Modeling and Performance Monitoring of a Photovoltaic-Thermal (PVT) Water Collector
,”
Sol. Energy
,
112
, pp.
85
99
.
15.
Skoplaki
,
E.
, and
Palyvos
,
J. A.
,
2009
, “
On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations
,”
Sol. Energy
,
83
(
5
), pp.
614
624
.
16.
Herrando
,
M.
, and
Markides
,
C. N.
,
2016
, “
Hybrid PV and Solar-Thermal Systems for Domestic Heat and Power Provision in the UK: Techno-Economic Considerations
,”
Appl. Energy
,
161
, pp.
512
532
.
17.
Herrando
,
M.
,
Markides
,
C. N.
, and
Hellgardt
,
K. A.
,
2014
, “
UK-Based Assessment of Hybrid PV and Solar-Thermal Systems for Domestic Heating and Power: System Performance
,”
Appl. Energy
,
122
, pp.
288
309
.
18.
Hassan
,
A. A.
,
Elwardany
,
A. E.
,
Ookawara
,
S.
, and
El-Sharkawy
,
I. I.
,
2021
, “
Performance Investigation of a Solar-Powered Adsorption-Based Trigeneration System for Cooling, Electricity, and Domestic Hot Water Production
,”
Appl. Therm. Eng.
,
199
, p.
117553
.
19.
Márquez
,
A. A.
,
Muñoz
,
F. D.
,
Hernández
,
F. F.
,
Manuel
,
J.
, and
López
,
C.
,
2022
, “
Domestic Hot Water Production System in a Hospital: Energy Audit and Evaluation of Measures to Boost the Solar Contribution
,”
Energy
,
261
(
B
), p.
125275
.
20.
Chandrasekar
,
M.
, and
Senthilkumar
,
T.
,
2021
, “
Five Decades of Evolution of Solar Photovoltaic Thermal (PVT) Technology—A Critical Insight on Review Articles
,”
J. Cleaner Prod.
,
322
, p.
128997
.
21.
Chhugani
,
B.
,
Pärisch
,
P.
,
Helmling
,
S.
, and
Giovannetti
,
F.
,
2023
, “
Comparison of PVT—Heat Pump Systems With Reference Systems for the Energy Supply of a Single-Family House
,”
Sol. Energy Adv.
,
3
, p.
100031
.
22.
Mittelman
,
G.
,
Kribus
,
A.
, and
Dayan
,
A.
,
2007
, “
Solar Cooling With Concentrating Photovoltaic/ Thermal (CPVT) Systems
,”
Energy Convers. Manage.
,
48
(
9
), pp.
2481
2490
.
23.
Buonomano
,
A.
,
Mittelman
,
G.
,
Faiman
,
D.
,
Biryukov
,
S.
,
Melnichak
,
V.
, and
Bukobza
,
D.
,
2012
, “
Modelling an Actively-Cooled CPV System
,”
AIP Conf. Proc.
,
1477
(
235
), pp.
235
243
.
24.
Segev
,
G.
,
Mittelman
,
G.
, and
Kribus
,
A.
,
2012
, “
Equivalent Circuit Models for Triple-Junction Concentrator Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
98
, pp.
57
65
.
25.
Best
,
R.
, and
Rivera
,
W.
,
2015
, “
A Review of Thermal Cooling Systems
,”
Appl. Therm. Eng.
,
75
, pp.
1162
1175
.
26.
Calise
,
F.
,
d’Accadia
,
M. D.
, and
Vanoli
,
L.
,
2012
, “
Design and Dynamic Simulation of a Novel Solar Trigeneration System Based on Hybrid Photovoltaic/Thermal Collectors (PVT)
,”
Energy Convers. Manage.
,
60
, pp.
214
225
.
27.
Herrando
,
M.
,
Pantaleo
,
A. M.
,
Wang
,
K.
, and
Markides
,
C. N.
,
2019
, “
Solar Combined Cooling, Heating and Power Systems Based on Hybrid PVT, PV or Solar-Thermal Collectors for Building Applications
,”
Renewable Energy
,
143
, pp.
637
647
.
28.
Herrando
,
M.
,
Simón
,
R.
,
Guedea
,
I.
, and
Fueyo
,
N.
,
2021
, “
The Challenges of Solar Hybrid PVT Systems in the Food Processing Industry
,”
Appl. Therm. Eng.
,
184
, p.
116235
.
29.
Khan
,
M. Z. I.
,
Alam
,
K. C. A.
,
Saha
,
B. B.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
,
2007
, “
Study on a Re-Heat Two-Stage Adsorption Chiller—The Influence of Thermal Capacitance Ratio, Overall Thermal Conductance Ratio and Adsorbent Mass on System Performance
,”
Appl. Therm. Eng.
,
27
(
10
), pp.
1677
1685
.
30.
Kim
,
D. S.
, and
Infante Ferreira
,
C. A.
,
2008
, “
Solar Refrigeration Options—A State-of-the-Art Review
,”
Int. J. Refrig.
,
31
(
1
), pp.
3
15
.
31.
Brottier
,
L.
, and
Bennacer
,
R.
,
2020
, “
Thermal Performance Analysis of 28 PVT Solar Domestic Hot Water Installations in Western Europe
,”
Renewable Energy
,
160
, pp.
0960
1481
.
32.
Zenhäusern
,
D.
,
Bamberger
,
E.
,
Baggenstos
,
A.
, and
Häberle
,
A.
,
2017
, “
PVT Wrap-Up: Energy Systems With Photovoltaic-Thermal Solar Collectors
,”
Proceedings of SWC2017/SHC2017
,
Abu Dhabi, UAE
,
Oct. 29–Nov. 2
.
33.
Klein
,
S. A.
,
Beckman
,
W.
,
Mitchell
,
J. W.
,
Duffie
,
J.
,
Duffie
,
N. A.
,
Freeman
,
T. L.
,
Mitchell
,
J. C.
, et al
,
2009
, “TRNSYS: A Transient System Simulation Program,” Vol. 5, Mathematical Reference, University of Wisconsin Madison, Madison, WI, Solar Energy Laboratory, http://sel.me.wisc.edu/trnsys.
34.
Zondag
,
H. A.
,
De Vries
,
D. W.
,
Van Helden
,
W. G. J.
,
Van Zolingen
,
R. J. C.
, and
Van Steenhoven
,
A. A.
,
2002
, “
The Thermal and Electrical Yield of a PV-Thermal Collector
,”
Sol. Energy
,
72
(
2
), pp.
113
128
.
35.
Kim
,
J. H.
, and
Kim
,
J. T.
,
2012
, “
Comparison of Electrical and Thermal Performances of Glazed and Unglazed PVT Collectors
,”
Int. J. Photoenergy
,
2012
, pp.
1
7
.
36.
Jannot
,
Y.
,
2003
, “
Thermique Solaire
,” pp.
30
70
.
37.
Almohammadi
,
K. M.
, and
Harby
,
K.
,
2020
, “
Operational Conditions Optimization of a Proposed Solar-Powered Adsorption Cooling System: Experimental, Modeling, and Optimization Algorithm Techniques
,”
Energy
,
206
, p.
118007
.
38.
Bhattarai
,
S.
,
Oh
,
J. H.
,
Euh
,
S. H.
,
Gopi
,
G. K.
, and
Kim
,
D. H.
,
2012
, “
Simulation and Model Validation of Sheet and Tube Type Photovoltaic Thermal Solar System and Conventional Solar Collecting System in Transient States
,”
Sol. Energy Mater. Sol. Cells
,
103
, pp.
184
193
.
You do not currently have access to this content.