Abstract

Technology innovation requires advanced heat transporting techniques to fulfill better exergy and economic behavior of compact air heat exchangers (HXs). Three different turbulator inserts, TTIs, PTTIs, and DTTIs (twisted turbulator inserts, perforated twisted turbulator inserts, and dimpled twisted turbulator inserts, respectively), are used in air HX on the tube side as a passive technique for heat transfer enhancement. The present investigation deals with the exergo-economic with a sustainable analysis of air HX utilizing several water-based tripartite hybrid nanofluids (THdNFs), formed from three different nanoparticles intermixing, six different compositions based on the structure of nanoparticles, and three various turbulator placed to the tube core of HX. The detailed investigation of 4Es and sustainability of the device are investigated under various operating conditions. Results disclosed that nanofluid alone is not enough for energy and exergy improvement. However, turbulator passive device inserts in HX with THdNF show a remarkable improvement in thermal and thermohydraulic performance. The DTTI passive device in plain tubes using THdNF 5(Al2O3 + TiO2 + graphene–water) results in the highest 27% overall coefficient, 24.7% exergy change, 6.4% exergy efficiency, 7.4% performance index, and higher sustainability index at lowest Reynolds number than without inserts. Meanwhile, turbulator inserts yield to most increased 91.4% operating cost and equivalent CO2 emissions to the environment. Investigation revealed that the passive device DTTI with THdNF 5(Al2O3 + TiO2 + graphene–water) as a working fluid is likely to be preferred due to the highest performance evaluation criteria (PEC) ranges 2.3–2.45 for the same power, and the least preferred working fluid would be THdNF 2 (Al2O3 + Fe2O3 + SiC–water) due to its high operating cost.

References

1.
Lei
,
Y.
,
Zheng
,
F.
,
Song
,
C.
, and
Lyu
,
Y.
,
2017
, “
Improving the Thermal Hydraulic Performance of a Circular Tube by Using Punched Delta-Winglet Vortex Generators
,”
Int J. Heat Mass Transfer
,
111
(
1
), pp.
299
311
.
2.
Liu
,
S.
, and
Sakr
,
M.
,
2013
, “
A Comprehensive Review on Passive Heat Transfer Enhancements in Pipe Exchangers
,”
Renew. Sustain. Energy Rev.
,
19
(
1
), pp.
64
81
.
3.
Eiamsa-Ard
,
S.
,
Seemawute
,
P.
, and
Wongcharee
,
K.
,
2010
, “
Influences of Peripherally-Cut Twisted Tape Insert on Heat Transfer and Thermal Performance Characteristics in Laminar and Turbulent Tube Flows
,”
Exp. Therm. Fluid Sci.
,
34
(
6
), pp.
711
719
.
4.
Chu
,
W. X.
,
Tsai
,
C. A.
,
Lee
,
B. H.
,
Cheng
,
K. Y.
, and
Wang
,
C. C.
,
2020
, “
Experimental Investigation on Heat Transfer Enhancement With a Twisted Tape Having Various V-Cut Configurations
,”
Appl. Therm. Eng.
,
172
(
1
), p.
115148
.
5.
Murugesan
,
P.
,
Mayilsamy
,
K.
,
Suresh
,
S.
, and
Srinivasan
,
P. S. S.
,
2011
, “
Heat Transfer and Pressure Drop Characteristics in a Circular Tube Fitted With and Without V-Cut Twisted Tape Insert
,”
Int. Commun. Heat Mass Transfer
,
38
(
3
), pp.
329
334
.
6.
Murugesan
,
P.
,
Mayilsamy
,
K.
, and
Suresh
,
S.
,
2010
, “
Turbulent Heat Transfer and Pressure Drop in Tube Fitted With Square-Cut Twisted Tape
,”
Chinese J. Chem. Eng.
,
18
(
4
), pp.
609
617
.
7.
Murugesan
,
P.
,
Mayilsamy
,
K.
, and
Suresh
,
S.
,
2011
, “
Heat Transfer in Tubes Fitted With Trapezoidal-Cut and Plain Twisted Tape Inserts
,”
Chem. Eng. Commun.
,
198
(
7
), pp.
886
904
.
8.
Nakhchi
,
M. E.
,
Hatami
,
M.
, and
Rahmati
,
M.
,
2020
, “
Experimental Investigation of Heat Transfer Enhancement of a Heat Exchanger Tube Equipped With Double-Cut Twisted Tapes
,”
Appl. Therm. Eng.
,
180
(
1
), p.
115863
.
9.
Nakhchi
,
M. E.
, and
Esfahani
,
J. A.
,
2019
, “
Numerical Investigation of Rectangular-Cut Twisted Tape Insert on Performance Improvement of Heat Exchangers
,”
Int. J. Therm. Sci.
,
138
(
1
), pp.
75
83
.
10.
Suri
,
A. R. S.
,
Kumar
,
A.
, and
Maithani
,
R.
,
2017
, “
Heat Transfer Enhancement of Heat Exchanger Tube With Multiple Square Perforated Twisted Tape Inserts: Experimental Investigation and Correlation Development
,”
Chem. Eng. Process. Intens.
,
116
(
1
), pp.
76
96
.
11.
Vaisi
,
A.
,
Moosavi
,
R.
,
Lashkari
,
M.
, and
Soltani
,
M. M.
,
2020
, “
Experimental Investigation of Perforated Twisted Tapes Turbulator on Thermal Performance in Double Pipe Heat Exchangers
,”
Chem. Eng. Process. Intens.
,
154
(
1
), p.
108028
.
12.
Nanan
,
K.
,
Thianpong
,
C.
,
Promvonge
,
P.
, and
Eiamsa-Ard
,
S.
,
2014
, “
Investigation of Heat Transfer Enhancement by Perforated Helical Twisted-Tapes
,”
Int. Commun. Heat Mass Transfer
,
52
(
1
), pp.
106
112
.
13.
Man
,
C.
,
Yao
,
J.
, and
Wang
,
C.
,
2016
, “
The Experimental Study on the Heat Transfer and Friction Factor Characteristics in Tube With a New Kind of Twisted Tape Insert
,”
Int. Commun. Heat Mass Transfer
,
75
(
1
), pp.
124
129
.
14.
Bhuiya
,
M. M. K.
,
Chowdhury
,
M. S. U.
,
Saha
,
M.
, and
Islam
,
M. T.
,
2013
, “
Heat Transfer and Friction Factor Characteristics in Turbulent Flow Through a Tube Fitted With Perforated Twisted Tape Inserts
,”
Int. Commun. Heat Mass Transfer
,
46
(
1
), pp.
49
57
.
15.
Ponnada
,
S.
,
Subrahmanyam
,
T.
, and
Naidu
,
S. V.
,
2019
, “
A Comparative Study on the Thermal Performance of Water in a Circular Tube With Twisted Tapes, Perforated Twisted Tapes and Perforated Twisted Tapes With Alternate Axis
,”
Int. J. Therm. Sci.
,
136
(
2
), pp.
530
538
.
16.
Eiamsa-ard
,
S.
,
Wongcharee
,
K.
,
Eiamsa-Ard
,
P.
, and
Thianpong
,
C.
,
2010
, “
Heat Transfer Enhancement in a Tube Using Delta-Winglet Twisted Tape Inserts
,”
Appl. Therm. Eng.
,
30
(
4
), pp.
310
318
.
17.
Khoshvaght-Aliabadi
,
M.
,
Farsi
,
M.
,
Hassani
,
S. M.
,
Abu-Hamdeh
,
N. H.
, and
Alimoradi
,
A.
,
2021
, “
Surface Modification of Transversely Twisted-Turbulator Using Perforations and Winglets: An Extended Study
,”
Int. Commun. Heat Mass Transfer
,
120
(
1
), p.
105020
.
18.
Eiamsa-Ard
,
S.
,
Wongcharee
,
K.
,
Eiamsa-Ard
,
P.
, and
Thianpong
,
C.
,
2010
, “
Thermohydraulic Investigation of Turbulent Flow Through a Round Tube Equipped With Twisted Tapes Consisting of Centre Wings and Alternate-Axes
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1151
1161
.
19.
Won
,
S. Y.
, and
Ligrani
,
P. M.
,
2007
, “
Flow Characteristics Along and Above Dimpled Surfaces With Three Different Dimple Depths Within a Channel
,”
J. Mech. Sci. Technol.
,
21
(
11
), pp.
1901
1909
.
20.
Akhavan-Behabadi
,
M. A.
,
Kumar
,
R.
,
Mohammadpour
,
A.
, and
Jamali-Asthiani
,
M.
,
2009
, “
Effect of Twisted Tape Insert on Heat Transfer and Pressure Drop in Horizontal Evaporators for the Flow of R-134a
,”
Int. J. Refrig.
,
32
(
5
), pp.
922
930
.
21.
Moravej
,
M.
,
Bozorg
,
M. V.
,
Guan
,
Y.
,
Li
,
L. K.
,
Doranehgard
,
M. H.
,
Hong
,
K.
, and
Xiong
,
Q.
,
2020
, “
Enhancing the Efficiency of a Symmetric Flat-Plate Solar Collector Via the Use of Rutile TiO2-Water Nanofluids
,”
Sustain. Energy Technol. Assess.
,
40
(
1
), p.
100783
.
22.
Shamshirgaran
,
S.
,
Khalaji Assadi
,
M.
,
Al-Kayiem
,
H. H.
, and
Viswanatha Sharma
,
K.
,
2018
, “
Energetic and Exergetic Performance of a Solar Flat-Plate Collector Working With Cu Nanofluid
,”
ASME J. Solar Energy Eng.
,
140
(
3
), p.
031002
.
23.
Goodarzi
,
M.
,
Tlili
,
I.
,
Tian
,
Z.
, and
Safaei
,
M. R.
,
2019
, “
Efficiency Assessment of Using Graphene Nanoplatelets-Silver/Water Nanofluids in Microchannel Heat Sinks With Different Cross-Sections for Electronics Cooling
,”
Int. J. Numer. Methods Heat Fluid Flow
,
30
(
1
), pp.
1
10
.
24.
Ambreen
,
T.
,
Saleem
,
A.
,
Ali
,
H. M.
,
Shehzad
,
S. A.
, and
Park
,
C. W.
,
2019
, “
Performance Analysis of Hybrid Nanofluid in a Heat Sink Equipped With Sharp and Streamlined Micro Pin-Fins
,”
Powder Technol.
,
355
(
1
), pp.
552
563
.
25.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2021
, “
Exergy and Energy Performance for Wavy Fin Radiator With a New Coolant of Various Shape Nanoparticle-Based Hybrid Nanofluids
,”
J. Therm. Anal. Calorim.
,
143
(
6
), pp.
3911
3922
.
26.
Saysroy
,
A.
, and
Eiamsa-Ard
,
S.
,
2017
, “
Enhancing Convective Heat Transfer in Laminar and Turbulent Flow Regions Using Multi-Channel Twisted Tape Inserts
,”
Int. J. Therm. Sci.
,
121
(
4
), pp.
55
74
.
27.
Amanuel
,
T.
, and
Mishra
,
M.
,
2021
, “
Comparative Study of Thermal and Hydraulic Performance of Three-Fluid Tubular Heat Exchanger With CuO–Water Nanofluid: Single-Phase and Multi-Phase Approaches
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031012
.
28.
Chamkha
,
A. J.
,
Miroshnichenko
,
I. V.
, and
Sheremet
,
M. A.
,
2017
, “
Numerical Analysis of Unsteady Conjugate Natural Convection of Hybrid Water-Based Nanofluid in a Semicircular Cavity
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041004
.
29.
Zhu
,
Y.
,
Yang
,
F.
, and
Guo
,
Y.
,
2020
, “
A Variable-Curvature Spiral-Coil Heat Exchanger for Automobile Exhaust Heat Recovery
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031005
.
30.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2021
, “
Experimental and Numerical Study on Cooling System Waste Heat Recovery for Engine Air Preheating by Ternary Hybrid Nanofluid
,”
J. Enhance. Heat Transfer
,
28
(
4
), pp.
1
29
.
31.
Nakhchi
,
M. E.
, and
Esfahani
,
J. A.
,
2021
, “
Numerical Investigation of Turbulent CuO–Water Nanofluid Inside Heat Exchanger Enhanced With Double V-Cut Twisted Tapes
,”
J. Therm. Anal. Calorim.
,
145
(
5
), pp.
2535
2545
.
32.
Bahiraei
,
M.
,
Jamshidmofid
,
M.
, and
Goodarzi
,
M.
,
2019
, “
Efficacy of a Hybrid Nanofluid in a New Microchannel Heat Sink Equipped With Both Secondary Channels and Ribs
,”
J. Mol. Liq.
,
273
(
4
), pp.
88
98
.
33.
Rashidi
,
S.
,
Akbarzadeh
,
M.
,
Karimi
,
N.
, and
Masoodi
,
R.
,
2018
, “
Combined Effects of Nanofluid and Transverse Twisted-Baffles on the Flow Structures, Heat Transfer and Irreversibilities Inside a Square Duct—A Numerical Study
,”
Appl. Therm. Eng.
,
130
(
2
), pp.
135
148
.
34.
Syam Sundar
,
L.
,
Sousa
,
A. C.
, and
Singh
,
M. K.
,
2015
, “
Heat Transfer Enhancement of Low Volume Concentration of Carbon Nanotube-Fe3O4/Water Hybrid Nanofluids in a Tube With Twisted Tape Inserts Under Turbulent Flow
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
2
), p.
021015
.
35.
Khurana
,
D.
, and
Subudhi
,
S.
,
2022
, “
Heat Transfer and Pressure Drop Performance of Al2O3/Water and TiO2/Water Nanofluids in Tube Fitted With Simple or Modified Spiral Tape Inserts
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
5
), p.
051012
.
36.
Hata
,
K.
,
Fukuda
,
K.
, and
Masuzaki
,
S.
,
2014
, “
Transient Critical Heat Fluxes of Subcooled Water Flow Boiling in SUS304-Circular Tubes With Various Twisted-Tape Inserts (Influence of Twist Ratio)
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
3
), p.
031010
.
37.
Esmaeilzadeh
,
E.
,
Almohammadi
,
H.
,
Nokhosteen
,
A.
,
Motezaker
,
A.
, and
Omrani
,
A. N.
,
2014
, “
Study on Heat Transfer and Friction Factor Characteristics of γ-Al2O3/Water Through Circular Tube With Twisted Tape Inserts With Different Thickness
,”
Int. J. Therm. Sci.
,
82
(
1
), pp.
72
83
.
38.
Hasanpour
,
A.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2017
, “
Intensification of Heat Exchangers Performance by Modified and Optimized Twisted Tapes
,”
Chem. Eng. Process. Intens.
,
120
(
4
), pp.
276
285
.
39.
Nakhchi
,
M. E.
, and
Esfahani
,
J. A.
,
2018
, “
Cu-Water Nanofluid Flow and Heat Transfer in a Heat Exchanger Tube Equipped With Cross-Cut Twisted Tape
,”
Powder Technol.
,
339
(
2
), pp.
985
994
.
40.
Sharma
,
K. V.
,
Sundar
,
L. S.
, and
Sarma
,
P. K.
,
2009
, “
Estimation of Heat Transfer Coefficient and Friction Factor in the Transition Flow With Low Volume Concentration of Al2O3 Nanofluid Flowing in a Circular Tube and With Twisted Tape Insert
,”
Int. Commun. Heat Mass Transfer
,
36
(
5
), pp.
503
507
.
41.
Reddy
,
M. C. S.
, and
Rao
,
V. V.
,
2014
, “
Experimental Investigation of Heat Transfer Coefficient and Friction Factor of Ethylene Glycol Water Based TiO2 Nanofluid in Double Pipe Heat Exchanger With and Without Helical Coil Inserts
,”
Int. Commun. Heat Mass Transfer
,
50
(
2
), pp.
68
76
.
42.
Hamid
,
K. A.
,
Azmi
,
W. H.
,
Mamat
,
R.
, and
Sharma
,
K. V.
,
2019
, “
Heat Transfer Performance of TiO2–SiO2 Nanofluids in a Tube With Wire Coil Inserts
,”
Appl. Therm. Eng.
,
152
(
4
), pp.
275
286
.
43.
Kumar
,
V.
, and
Sahoo
,
R.
,
2022
, “
Preheating Effects on CI Engine Through Waste Heat Recovery Using THNF Based Radiator Coolant: An Experimental Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
12
), p.
121004
.
44.
Kumar
,
V.
,
Singh
,
S. K.
,
Kumar
,
V.
,
Jamshed
,
W.
, and
Nisar
,
K. S.
,
2021
, “
Thermal and Thermo-Hydraulic Behaviour of Alumina-Graphene Hybrid Nanofluid in Minichannel Heat Sink: An Experimental Study
,”
Int. J. Energy Res.
,
45
(
15
), pp.
20700
20714
.
45.
Kashyap
,
S.
,
Sarkar
,
J.
, and
Kumar
,
A.
,
2021
, “
Performance Enhancement of Regenerative Evaporative Cooler by Surface Alterations and Using Ternary Hybrid Nanofluids
,”
Energy
,
225
(
1
), p.
120199
.
46.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2019
, “
Exergy and Energy Analysis of a Wavy Fin Radiator With Variously Shaped Nanofluids as Coolants
,”
Heat Transfer Asian Res.
,
48
(
6
), pp.
2174
2192
.
47.
Bahiraei
,
M.
,
Mazaheri
,
N.
, and
Aliee
,
F.
,
2019
, “
Second Law Analysis of a Hybrid Nanofluid in Tubes Equipped With Double Twisted Tape Inserts
,”
Powder Technol.
,
345
(
1
), pp.
692
703
.
48.
Bahiraei
,
M.
, and
Heshmatian
,
S.
,
2017
, “
Efficacy of a Novel Liquid Block Working With a Nanofluid Containing Graphene Nanoplatelets Decorated With Silver Nanoparticles Compared With Conventional CPU Coolers
,”
Appl. Therm. Eng.
,
127
(
4
), pp.
1233
1245
.
49.
Sundar
,
L. S.
,
Chandra Mouli
,
K. V.
,
Said
,
Z.
, and
Sousa
,
A.
,
2021
, “
Heat Transfer and Second Law Analysis of Ethylene Glycol-Based Ternary Hybrid Nanofluid Under Laminar Flow
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051021
.
50.
Mmohammadiun
,
M.
,
Dashtestani
,
F.
, and
Alizadeh
,
M.
,
2016
, “
Exergy Prediction Model of a Double Pipe Heat Exchanger Using Metal Oxide Nanofluids and Twisted Tape Based on the Artificial Neural Network Approach and Experimental Results
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
1
), p.
011801
.
51.
Singh
,
S. K.
, and
Sarkar
,
J.
,
2021
, “
Improving Hydrothermal Performance of Double-Tube Heat Exchanger With Modified Twisted Tape Inserts Using Hybrid Nanofluid
,”
J. Therm. Anal. Calorim.
,
143
(
6
), pp.
4287
4298
.
52.
Bahiraei
,
M.
,
Mazaheri
,
N.
, and
Bakhti
,
A.
,
2018
, “
Irreversibility Characteristics of Nanofluid Flow Under Chaotic Advection in a Minichannel for Different Nanoparticle Types
,”
J. Taiwan Inst. Chem. Eng.
,
88
(
2
), pp.
25
36
.
53.
Wang
,
C. C.
,
Fu
,
W. L.
, and
Chang
,
C. T.
,
1997
, “
Heat Transfer and Friction Characteristics of Typical Wavy Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
14
(
2
), pp.
174
186
.
54.
Sahoo
,
R. R.
,
2020
, “
Thermo-Hydraulic Characteristics of Radiator With Various Shape Nanoparticle-Based Ternary Hybrid Nanofluid
,”
Powder Technol.
,
370
(
2
), pp.
19
28
.
55.
Sahoo
,
R. R.
, and
Kumar
,
V.
,
2021
, “
Impact of Novel Dissimilar Shape Ternary Composition-Based Hybrid Nanofluids on the Thermal Performance Analysis of Radiator
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041002
.
56.
Sahoo
,
R. R.
, and
Kumar
,
V.
,
2020
, “
Development of a New Correlation to Determine the Viscosity of Ternary Hybrid Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
111
(
2
), p.
104451
.
57.
Sahu
,
M.
,
Sarkar
,
J.
, and
Chandra
,
L.
,
2020
, “
Transient Thermo-Hydraulics and Performance Characteristics of Single-Phase Natural Circulation Loop Using Hybrid Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
110
(
1
), p.
104433
.
58.
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(
1
), p.
014304
.
59.
Gnielinski
,
V.
,
2013
, “
On Heat Transfer in Tubes
,”
Int. J. Heat Mass Transfer
,
63
(
2
), pp.
134
140
.
60.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part I—Laminar Flow
,”
J. Heat Transfer
,
115
(
4
), pp.
890
896
.
61.
Smithberg
,
E.
, and
Landis
,
F.
,
1964
, “
Friction and Forced Convection Heat-Transfer Characteristics in Tubes With Twisted Tape Swirl Generators
,”
J. Heat Transfer
,
86
(
1
), pp.
39
48
.
62.
Dagdevir
,
T.
, and
Ozceyhan
,
V.
,
2021
, “
An Experimental Study on Heat Transfer Enhancement and Flow Characteristics of a Tube With Plain, Perforated and Dimpled Twisted Tape Inserts
,”
Int. J. Therm. Sci.
,
159
(
1
), p.
106564
.
63.
Hamid
,
K. A.
,
Azmi
,
W. H.
,
Nabil
,
M. F.
, and
Mamat
,
R.
,
2018
, “
Experimental Investigation of Nanoparticle Mixture Ratios on TiO2–SiO2 Nanofluids Heat Transfer Performance Under Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
118
(
2
), pp.
617
627
.
64.
Said
,
Z.
,
Assad
,
M. E. H.
,
Hachicha
,
A. A.
,
Bellos
,
E.
,
Abdelkareem
,
M. A.
,
Alazaizeh
,
D. Z.
, and
Yousef
,
B. A.
,
2019
, “
Enhancing the Performance of Automotive Radiators Using Nanofluids
,”
Renew. Sustain. Energy Rev.
,
112
(
3
), pp.
183
194
.
65.
Khan
,
A.
,
Ali
,
H. M.
,
Nazir
,
R.
,
Ali
,
R.
,
Munir
,
A.
,
Ahmad
,
B.
, and
Ahmad
,
Z.
,
2019
, “
Experimental Investigation of Enhanced Heat Transfer of a Car Radiator Using ZnO Nanoparticles in H2O–Ethylene Glycol Mixture
,”
J. Therm. Anal. Calorim.
,
138
(
5
), pp.
3007
3021
.
66.
Mishra
,
M.
,
Das
,
P. K.
, and
Sarangi
,
S.
,
2009
, “
Second Law Based Optimisation of Crossflow Plate-Fin Heat Exchanger Design Using Genetic Algorithm
,”
Appl. Therm. Eng.
,
29
(
14
), pp.
2983
2989
.
67.
Rosen
,
M. A.
,
Dincer
,
I.
, and
Kanoglu
,
M.
,
2008
, “
Role of Exergy in Increasing Efficiency and Sustainability and Reducing Environmental Impact
,”
Energy Pol.
,
36
(
1
), pp.
128
137
.
68.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.
69.
Caliskan
,
H.
,
Dincer
,
I.
, and
Hepbasli
,
A.
,
2012
, “
Exergoeconomic, Enviroeconomic and Sustainability Analyses of a Novel Air Cooler
,”
Energy Build.
,
55
(
1
), pp.
747
756
.
You do not currently have access to this content.