Abstract

The present work investigates numerically the performance of a fin- and tube-type heat exchanger using the finite volume method. The effect of different winglet geometries, namely, straight profile, concave profile, convex profile, and their combinations are extensively examined under turbulent flow conditions to evaluate the pressure drop and heat transfer performance. These winglets are also tested for smaller leading-edge and larger trailing edge, and vice versa—it has been observed that the former winglet configuration outperforms the latter ones. The convex profiled winglets yield the highest heat transfer performance as well as pressure drops, whereas the winglet with a concave profile has the lowest heat transfer coefficient and pressure drop values. The enhancement factor—defined as the ratio of enhancement in heat transfer to the enhancement in pressure drop penalty—has also been calculated for all models. Conclusive results indicate that the convex profile and the concave–convex (a hybrid winglet) configuration, with a smaller leading edge, deliver the highest enhancement factor compared to other profiles. Following this, the study is further elaborated to find the optimum height for the convex winglet profile. General correlations have also been developed to estimate the Colburn factor, friction factor, and enhancement factor for variations in the leading edge of the convex profile.

References

1.
Okbaz
,
A.
,
Pinarbaş
,
A.
, and
Olcay
,
A. B.
,
2020
, “
Experimental Investigation of Effect of Different Tube Row-Numbers, Fin Pitches and Operating Conditions on Thermal and Hydraulic Performances of Louvered and Wavy Finned Heat Exchangers
,”
Int. J. Therm. Sci.
,
151
, pp.
1
15
.
2.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid Sci.
,
11
(
3
), pp.
295
309
.
3.
Edwards
,
F. J.
, and
Alker
,
G. J. R.
,
1974
, “
The Improvement of Forced Convection Surface Heat Transfer Using Surface Protrusions in the Form of (a) Cubes and (b) Vortex Generators
,”
Proceedings of the Fifth International Heat Transfer Conference
,
Tokyo, Japan
,
Sept. 3–7
, Vol. 2, pp.
2244
2248
.
4.
Patankar
,
S. V.
, and
Prakash
,
C.
,
1981
, “
An Analysis of Effect of Plate Thickness on Laminar Flow and Heat Transfer in Interrupted-Plate Passages
,”
Int. J. Heat Mass Transfer
,
24
(
11
), pp.
1801
1810
.
5.
Russell
,
C. M. B.
,
Jones
,
T. V.
, and
Lee
,
G. H.
,
1982
, “
Heat Transfer Enhancement Using Vortex Generators
,”
Proceedings of the Seventh International Heat Transfer Conference
,
Munchen, Germany
,
Sept. 6–10
, Vol. 3, pp.
283
288
.
6.
Fiebig
,
M.
,
Kallweit
,
P.
, and
Mitra
,
N. K.
,
1986
, “
Wing-Type Vortex Generators for Heat Transfer Enhancement
,”
International Heat Transfer Conference Digital Library
, Vol.
6
, pp.
2909
2913
.
7.
Fiebig
,
M.
,
Kallweit
,
P.
,
Mitra
,
N. K.
, and
Tiggelbeck
,
S.
,
1991
, “
Heat Transfer Enhancement and Drag by Longitudinal Vortex Generators in Channel Flow
,”
Exp. Therm. Fluid Sci.
,
4
(
1
), pp.
103
114
.
8.
Torii
,
K.
,
Yanagihara
,
J. I.
, and
Nagai
,
Y.
,
1991
, “
Heat Transfer Enhancement by Vortex Generators
,”
ASME/JSME Thermal Engineering Joint Conference
,
New York
,
ASME
, Vol,
I0309C
, pp.
77
83
.
9.
Zhu
,
J. X.
,
Fiebig
,
M.
, and
Mitra
,
N. K.
,
1995
, “
Numerical Investigation of Turbulent Flows and Heat Transfer in a Rib-Roughened Channel with Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
38
(
3
), pp.
495
501
.
10.
Tiggelbeck
,
S.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1994
, “
Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows
,”
ASME J. Heat Mass Trans.
,
116
(
4
), pp.
880
885
.
11.
Wang
,
C. C.
,
Chang
,
Y. J.
,
Hsieh
,
Y.-C.
, and
Lin
,
Y.-T.
,
1996
, “
Sensible Heat and Friction Characteristics of Plate Fin-and-Tube Heat Exchangers Having Plain Fins
,”
Int. J. Refrig.
,
19
(
4
), pp.
223
230
.
12.
Chen
,
Y.
,
Fiebig
,
M.
, and
Mitra
,
N. K.
,
1998a
, “
Conjugate Heat Transfer of a Finned Oval Tube With a Punched Longitudinal Vortex Generator in Form of a Delta Winglet- Parametric Investigations of the Winglet
,”
Int. J. Heat Mass Transfer
,
41
(
23
), pp.
3961
3978
.
13.
Chen
,
Y.
,
Fiebig
,
M.
, and
Mitra
,
N. K.
,
1998b
, “
Heat Transfer Enhancement of a Finned Oval Tube With Punched Longitudinal Vortex Generators Inline
,”
Int. J. Heat Mass Transfer
,
41
(
24
), pp.
4151
4166
.
14.
Sohankar
,
A.
, and
Davidson
,
L.
,
2001
, “
Effect of Inclined Vortex Generators on Heat Transfer Enhancement in a Three-Dimensional Channel
,”
Numer. Heat Transfer, Part A
,
39
(
5
), pp.
433
448
.
15.
Gentry
,
M. C.
, and
Jacobi
,
A. M.
,
2002
, “
Heat Transfer Enhancement by Delta-Wing-Generated Tip Vortices in Flat-Plate and Developing Channel Flows
,”
ASME J. Heat Mass Trans.
,
124
(
6
), pp.
1158
1168
.
16.
Leu
,
J. S.
,
Wu
,
Y. H.
, and
Jang
,
J. Y.
,
2004
, “
Heat Transfer and Fluid Flow Analysis in Plate-Fin and Tube Heat Exchangers With a Pair of Block Shape Vortex Generators
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4237
4338
.
17.
Pesteei
,
S. M.
,
Subbarao
,
P. M. V.
, and
Agarwal
,
R. S.
,
2005
, “
Experimental Study of the Effect of Winglet Location on Heat Transfer Enhancement and Pressure Drop in Fin-Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
25
(
11–12
), pp.
1684
1696
.
18.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2007
, “
A Numerical Study of Flow and Heat Transfer Enhancement Using an Array of Delta-Winglet Vortex Generators in a Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Mass Trans.
,
129
(
9
), pp.
1156
1167
.
19.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2008
, “
Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
,
31
(
1
), pp.
87
97
.
20.
Chu
,
P.
,
He
,
Y. L.
,
Lei
,
Y. G.
,
Tian
,
L. T.
, and
Li
,
R.
,
2009
, “
Three-Dimensional Numerical Study on Fin-and-Oval-Tube Heat Exchanger With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
859
876
.
21.
Lemouedda
,
A.
,
Breuer
,
M.
,
Franz
,
E.
,
Botsch
,
T.
, and
Delgado
,
A.
,
2010
, “
Optimization of the Angle of Attack of Delta-Winglet Vortex Generators in a Plate-fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5386
5399
.
22.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2011
, “
Impact of Delta Winglet Vortex Generator on the Performance of a Novel Fin-Tube Surfaces With Two Rows of Tubes in Different Diameters
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2895
2901
.
23.
He
,
Y. L.
,
Chu
,
P.
,
Tao
,
W.-Q.
,
Zhang
,
Y.-W.
, and
Xie
,
T.
,
2013
, “
Analysis of Heat Transfer and Pressure Drop for Fin-and-Tube Heat Exchangers With Rectangular Winglet-Type Vortex Generators
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
770
783
.
24.
Li
,
M. J.
,
Zhou
,
W. J.
,
Zhang
,
J. F.
,
Fan
,
J. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2014
, “
Heat Transfer and Pressure Performance of a Plain Fin With Radiantly Arranged Winglets Around Each Tube in Fin-and-Tube Heat Transfer Surface
,”
Int. J. Heat Mass Transfer
,
70
, pp.
734
744
.
25.
Wang
,
C. C.
,
Chen
,
K. Y.
,
Liaw
,
J. S.
, and
Tseng
,
C. Y.
,
2015a
, “
An Experimental Study of the Air-Side Performance of Fin-and-Tube Heat Exchangers Having Plain, Louver, and Semi-Dimple Vortex Generator Configuration
,”
Int. J. Heat Mass Transfer
,
80
, pp.
281
287
.
26.
Wang
,
C. C.
,
Chen
,
K. Y.
, and
Lin
,
Y. T.
,
2015b
, “
Investigation of the Semi-Dimple Vortex Generator Applicable to Fin-and-Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
88
, pp.
192
197
.
27.
Arora
,
A.
,
Subbarao
,
P. M. V.
, and
Agarwal
,
R. S.
,
2015
, “
Numerical Optimization of Location of “Common Flow up” Delta Winglets for Inline Aligned Finned Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
82
, pp.
329
340
.
28.
Sarangi
,
S. K.
, and
Mishra
,
D. P.
,
2017
, “
Effect of Winglet Location on Heat Transfer of a Fin-and Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
116
, pp.
528
540
.
29.
Sarangi
,
S. K.
,
Mishra
,
D. P.
, and
Mishra
,
P.
,
2019
, “
Analysis of Thermo-Fluid Performance of Fin-and-Tube Heat Exchanger Using Winglets
,”
ASME J. Heat Mass Trans.
,
141
(
10
), p.
101801
.
30.
Naik
,
H.
, and
Tiwari
,
S.
,
2018
, “
Effect of Winglet Location on Performance of Fin-Tube Heat Exchangers With Inline Tube Arrangement
,”
Int. J. Heat Mass Transfer
,
125
, pp.
248
261
.
31.
Sarangi
,
S. K.
,
Anand
,
N.
,
Srivastava
,
K.
,
Chamoli
,
P.
,
Mishra
,
D. P.
, and
Brar
,
L. S.
,
2021
,
Advances in Mechanical Processing and Design.
,
Springer Nature Singapore Pte Ltd
.
32.
Chimres
,
N.
,
Wang
,
C. C.
, and
Wongwises
,
S.
,
2018
, “
Effect of Elliptical Winglet on the Air-Side Performance of Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
123
, pp.
583
599
.
33.
Lu
,
G.
, and
Zhai
,
X.
,
2019
, “
Effects of Curved Vortex Generators on the Air-Side Performance of Fin-and-Tube Heat Exchangers
,”
Int. J. Therm. Sci.
,
136
, pp.
509
518
.
34.
Wang
,
Q.
,
Qian
,
Z.
,
Cheng
,
J.
,
Huang
,
W.
, and
Ren
,
J.
,
2019
, “
Analysis on Thermal Hydraulic Performance of the Elliptical Tube in the Finned Tube Heat Exchanger by New Method
,”
Int. J. Heat Mass Transfer
,
134
, pp.
388
397
.
35.
Ke
,
H.
,
Khan
,
T. A.
,
Li
,
W.
,
Lin
,
Y.
,
Ke
,
Z.
,
Zhu
,
H.
, and
Zhang
,
Z.
,
2019
, “
Thermal-Hydraulic Performance and Optimization of Attack Angle of Delta Winglets in Plain and Wavy Finned-Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
150
, pp.
1054
1065
.
36.
Kobayashi
,
H.
,
Yaji
,
K.
,
Yamasaki
,
S.
, and
Fujita
,
K.
,
2019
, “
Freeform Winglet Design of Fin-and-Tube Heat Exchangers Guided by Topology Optimization
,”
Appl. Therm. Eng.
,
161
, p.
114020
.
37.
Sarangi
,
S. K.
,
Mishra
,
D. P.
,
Ramachandran
,
H.
,
Anand
,
N.
,
Masih
,
V.
, and
Brar
,
L. S.
,
2021
, “
Analysis and Optimization of the Curved Trapezoidal Winglet Geometry in a Compact Heat Exchanger
,”
Appl. Therm. Eng.
,
182
, pp.
1
14
.
38.
Sarangi
,
S. K.
,
Mishra
,
D. P.
,
Ramachandran
,
H.
,
Anand
,
N.
,
Masih
,
V.
, and
Brar
,
L. S.
,
2021
, “
Analysis and Optimization of the Curved Trapezoidal Winglet Geometry in a High-Efficiency Compact Heat Exchanger
,”
Int. J. Therm. Sci.
,
164
, pp.
1
15
.
39.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Taylor and Francis
,
New York
,
315
.
40.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
41.
Menter
,
F. R.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow, Turbul. Combust.
,
77
(
1
), pp.
277
303
.
42.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.
43.
Leonard
,
B. P.
, and
Mokhtari
,
S.
,
1990
, “
ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow
,”
NASA Lewis Research Center ICOMP
,
90
(
12
), pp.
1
54
.
44.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.
45.
Khan
,
T. A.
, and
Li
,
W.
,
2017
, “
Optimal Configuration of Vortex Generator for Heat Transfer Enhancement in a Plate-Fin Channel
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021013
.
You do not currently have access to this content.