Abstract

A quasi-1D conjugate reduced order model (ROM) is developed to capture aero-thermal physics of effusion cooling in turbine airfoils. This framework explicitly considers the coolant supply from the leading edge and its distribution to both suction and pressure sides, the internal boundary layer flow between the shell and the inner core, the hole flow, the conduction on the solid walls, as well as the external film coverage. The solid temperature is allowed to vary both in metal shell thickness and the streamwise directions. Empirical correlations are employed to model pressure loss and heat transfer in the internal sections. Compound effect of multiple effusion cooling rows are utilized to capture cooling effectiveness and the heat load. Influence of mainstream static pressure, varying blowing ratios, hole’s diameter, hole’s pitch, coolant total pressure, and total temperature distributions along streamwise direction are taken into account. In Part I, the development and validation of the model is presented, which is shown to be capable of capturing complex internal aero-thermal physics of a turbine airfoil. Film coverage capability is separately validated successfully against available flat plate experimental data, with one case including internal channel and metal conduction. In Part II of this work, effusion cooling configuration is applied over an entire micro turbine vane and an exemplary optimization is carried out in the design space to minimize coolant flow while retaining metal temperature and its gradient below some limits. It is shown in the two-part work that the developed model is suitable for parametric studies of single-wall effusion turbine cooling such that comparative accuracy is obtained at a computational time 105 times lower than computational fluid dynamics (CFD) on a whole turbine vane/blade. Together, these two papers are intended to present, validate, and optimize the ROM for skin cooling in turbine airfoils by single-wall effusion.

References

1.
L’ecuyer
,
M. R.
, and
Soechting
,
F. O.
,
1985
, “
A Model for Correlating Flat Plate Film Cooling Effectiveness for Rows of Round Holes
,” AGARD Heat Transfer and Cooling in Gas Turbines No. 12.
2.
Stone
,
L. D.
, and
Goldstein
,
R. J.
,
1994
, “
Film Cooling Effectiveness Data for Simple Injection
,”
Int. J. Rotating Mach.
,
1
(
1
), pp.
73
81
.
3.
Boyle
,
R. J.
, and
Ameri
,
A. A.
,
2010
, “
A Correlation Approach to Predicting Film Cooled Turbine Vane Heat Transfer
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 4: Heat Transfer, Parts A and B
,
Glasgow, UK
,
June 14–18
, pp.
1841
1856
.
4.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2011
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
.
5.
Chowdhury
,
N. H. K.
,
Zirakzadeh
,
H.
, and
Han
,
J. C.
,
2017
, “
A Predictive Model for Preliminary Gas Turbine Blade Cooling Analysis
,”
ASME J. Turbomach.
,
139
(
9
), p.
091010
.
6.
Sellers
,
J. P.
,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
.
7.
Kirollos
,
B.
, and
Povey
,
T.
,
2015
, “
An Energy-Based Method for Predicting the Additive Effect of Multiple Film Cooling Rows
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
122607
.
8.
Fuqua
,
M. N.
, and
Rutledge
,
J. L.
,
2021
, “
Film Cooling Superposition Theory for Multiple Rows of Cooling Holes With Multiple Coolant Temperatures
,”
ASME J. Turbomach.
,
143
(
11
), p.
111003
.
9.
Eriksen
,
V. L.
, and
Goldstein
,
R. J.
,
1974
, “
Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes
,” ASME Paper 74-HT-V, pp.
239
245
.
10.
Hodges
,
J.
,
2015
, “
A Full Coverage Film Cooling Study: The Effect of an Alternating Compound Angle
,”
M.Sc. thesis
,
University of Central Florida
,
Orlando, FL
.
11.
Andrews
,
G. E.
, and
Mkpadi
,
M. C.
,
1984
, “
Full-Coverage Discrete Hole Wall Cooling: Discharge Coefficients
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
183
192
.
12.
Byerley
,
A. R.
,
1989
, “
Heat Transfer Near the Entrance to a Film Cooling Hole in a Gas Turbine Blade
,”
Ph.D. dissertation
,
University of Oxford
,
Oxford, UK
.
13.
Cukurel
,
B.
,
Selcan
,
C.
, and
Arts
,
T.
,
2012
, “
Film Cooling Extraction Effects on the Aero-Thermal Characteristics of Rib Roughened Cooling Channel Flow
,”
ASME J. Turbomach.
,
135
(
2
), p.
021016
.
14.
Scheepers
,
G.
, and
Morris
,
R. M.
,
2009
, “
Experimental Study of Heat Transfer Augmentation Near the Entrance to a Film Cooling Hole in a Turbine Blade Cooling Passage
,”
ASME J. Turbomach.
,
131
(
4
), p.
044501
.
15.
Moon
,
H.
,
Kim
,
K. M.
,
Jeon
,
Y. H.
,
Shin
,
S.
,
Park
,
J. S.
, and
Cho
,
H. H.
,
2015
, “
Effect of Thermal Stress on Creep Lifetime for a Gas Turbine Combustion Liner
,”
Eng. Fail. Anal.
,
47
(
A
), pp.
34
40
.
16.
National Research Council (U.S.)
,
1996
,
Coatings for High-Temperature Structural Materials: Trends and Opportunities
,
National Academy Press
,
Washington, DC
.
17.
Karaoglanli
,
A. C.
,
Doleker
,
K. M.
, and
Ozgurluk
,
Y.
,
2017
, “
State of the Art Thermal Barrier Coating (TBC) Materials and TBC Failure Mechanisms
,”
Adv. Struct. Mater.
,
33
, pp.
441
452
.
18.
Martena
,
M.
,
Botto
,
D.
,
Fino
,
P.
,
Sabbadini
,
S.
,
Gola
,
M. M.
, and
Badini
,
C.
,
2006
, “
Modelling of TBC System Failure: Stress Distribution as a Function of TGO Thickness and Thermal Expansion Mismatch
,”
Eng. Fail. Anal.
,
13
(
3
), pp.
409
426
.
19.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving From Macro to Micro Cooling
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 3C: Heat Transfer
,
San Antonio, TX
,
June 3–7
, pp.
1
17
.
20.
Krewinkel
,
R.
,
2013
, “
A Review of Gas Turbine Effusion Cooling Studies
,”
Int. J. Heat Mass Transfer
,
66
, pp.
706
722
.
21.
Arcangeli
,
L.
,
Facchini
,
B.
,
Surace
,
M.
, and
Tarchi
,
L.
,
2008
, “
Correlative Analysis of Effusion Cooling Systems
,”
ASME J. Turbomach.
,
130
(
1
), pp.
1
7
.
22.
Yang
,
L.
, and
Rao
,
Y.
,
2019
, “
Predicting the Adiabatic Effectiveness of Effusion Cooling by the Convolution Modeling Method
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Volume 5A: Heat Transfer
,
Phoenix, AZ
,
June 17–21
, pp.
1
9
.
23.
Gottiparthi
,
K. C.
,
Cao
,
C.
, and
Sankaran
,
V.
,
2019
, “
Modeling Effusion Cooling and Conjugate Heat Transfer Using Local Source Method
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 5B: Heat Transfer
,
Phoenix, AZ
,
June 17–21
, pp.
1
12
.
24.
Qu
,
L.-H.
,
Zhang
,
J.-Z.
, and
Tan
,
X.-M.
,
2017
, “
Improvement on Film Cooling Effectiveness by a Combined Slot-Effusion Scheme
,”
Appl. Therm. Eng.
,
126
, pp.
379
392
.
25.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
Experimental and Computational Methods for the Evaluation of Double-Wall, Effusion Cooling Systems
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 5A: Heat Transfer
,
Phoenix, AZ
,
June 17–21
, pp.
1
16
.
26.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2020
, “
An Experimentally Validated Low Order Model of the Thermal Response of Double-Wall Effusion Cooling Systems for HP Turbine Blades
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 7A: Heat Transfer
,
Virtual
,
Sept. 21–25
, pp.
1
13
.
27.
Blasius
,
H.
,
1908
, “
The Boundary Layers in Fluids With Little Friction
,”
Math. Phys.
,
56
(
1
), pp.
1
37
.
28.
Humpherys
,
A. S.
,
1987
, “
Energy Dissipation in Low Pressure Irrigation Pipelines: II Orifices
,”
Trans. ASAE
,
30
(
1
), pp.
0176
0182
.
29.
Haaland
,
S. E.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.
30.
Gamil
,
A. A. A.
,
Nikolaidis
,
T.
,
Teixeira
,
J. A.
,
Madani
,
S. H.
, and
Izadi
,
A.
,
2022
, “
Assessment of Surface Roughness Effects on Micro Axial Turbines
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual
,
Sept. 21–25, 2020
, pp.
1
11
.
31.
Xia
,
M.
,
Gu
,
D.
,
Yu
,
G.
,
Dai
,
D.
,
Chen
,
H.
, and
Shi
,
Q.
,
2016
, “
Influence of Hatch Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability During Additive Manufacturing of Inconel 718 Alloy
,”
Int. J. Mach. Tools Manuf.
,
109
, pp.
147
157
.
32.
Talebi
,
S. S.
, and
Tousi
,
A. M.
,
2017
, “
The Effects of Compressor Blade Roughness on the Steady State Performance of Micro-Turbines
,”
Appl. Therm. Eng.
,
115
, pp.
517
527
.
33.
Macdonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “
Flow Through Porous Media—The Ergun Equation Revisited
,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
199
208
.
34.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
John Wiley & Sons
,
Jefferson City, MO
.
35.
Lienhard
,
J. H.
, and
Lienhard
,
J. H. V.
,
1981
,
A Heat Transfer Textbook
,
Institute of Technology Press
,
Cambridge, MA
.
36.
Winka
,
J. R.
,
Anderson
,
J. B.
,
Boyd
,
E. J.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
2014
, “
Convex Curvature Effects on Film Cooling Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
136
(
6
), p.
061015
.
37.
Schwarz
,
S. G.
, and
Eckert
,
E. R. G.
,
1990
, “
The Influence of Curvature on Film Cooling Performance
,”
ASME J. Turbomach.
,
113
(
3
), pp.
472
478
.
38.
Ammari
,
H. D.
,
Hay
,
N.
, and
Lampard
,
D.
,
1991
, “
Effect of Acceleration on the Heat Transfer Coefficient on a Film-Cooled Surface
,”
ASME J. Turbomach.
,
113
(
3
), pp.
464
471
.
39.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA Report 19830020105.
40.
Krawciw
,
J.
,
Martin
,
D.
, and
Denman
,
P.
,
2015
, “
Measurement and Prediction of Adiabatic Film Effectiveness of Combustor Representative Effusion Arrays
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
, pp.
1
11
.
You do not currently have access to this content.