Abstract

In this study, consideration is given to a novel idea for thermal storage enhancement by the passive thermal self-insulation of the inside walls of containers when they are deliberately coated by nucleation sites and the working fluid is supersaturated with a certain gas. Here, it is proposed that a gas film blanketing the inside surfaces of the container may be promoted by previously supersaturating the working fluid in which the heat is to be stored (e.g, molten salts, water, etc) and covering the surface with nucleation sites. The last achievements in micro/nano surface modification allow the control in number and roughness of the surface with nucleation sites near to its critical radius for nucleation which translates into a vigorous gas precipitation even working at relatively low supersaturation rates. Utilizing a simplified geometrical and physical model, an expression for the average thickness of the film gas and the heat transfer coefficient was derived.

References

1.
Iasiello
,
M.
,
Mameli
,
M.
,
Filippeschi
,
S.
, and
Bianco
,
N.
,
2021
, “
Metal Foam/Pcm Melting Evolution Analysis: Orientation and Morphology Effects
,”
Appl. Therm. Eng.
,
187
, p.
116572
.
2.
Al-Jethelah
,
M. S.
,
Al-Sammarraie
,
A.
,
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Dutta
,
A.
,
2018
, “
Effect of Convection Heat Transfer on Thermal Energy Storage Unit
,”
Open Phys.
,
16
(
1
), pp.
861
867
.
3.
Yutao
,
H.
,
Maobin
,
Y.
, and
Zhonghao
,
R.
,
2022
, “
Heat Transfer Enhanced by Angle-Optimized Fan-Shaped Porous Medium in Phase Change Thermal Energy Storage System at Pore Scale
,”
Int. J. Therm. Sci.
,
172
(
Part B
), pp.
1
13
.
4.
Gonzalez
,
B.
, and
Prieto
,
M. M.
,
2021
, “
Radiant Heating Floors With PCM Bands for Thermal Energy Storage: A Numerical Analysis
,”
Int. J. Therm. Sci.
,
162
, p.
106803
.
5.
Qureshi
,
Z. H.
,
Al-Omari
,
S. A. B.
,
Elnajjar
,
E.
,
Al-Ketan
,
O.
, and
Al-Rub
,
R. A.
,
2022
, “
Nature-Inspired Triply Periodic Minimal Surface-Based Structures in Sheet and Solid Configurations for Performance Enhancement of a Low-Thermal-Conductivity Phase-Change Material for Latent-Heat Thermal-Energy-Storage Applications
,”
Int. J. Therm. Sci.
,
173
, p.
107361
.
6.
Zhang
,
C.
,
Lu
,
Y.
,
Shi
,
S.
, and
Wu
,
Y.
,
2021
, “
Comparative Research of Heat Discharging Characteristic of Single Tank Molten Salt Thermal Energy Storage System
,”
Int. J. Therm. Sci.
,
161
, pp.
1
8
.
7.
Webb
,
R. L.
,
1981
, “
The Evolution of Enhanced Surface Geometries for Nucleate Boiling
,”
Heat Transfer Eng.
,
2
(
3–4
), pp.
46
69
.
8.
Poongavanam
,
G. K.
,
Panchabikesan
,
K.
,
Leo
,
A. J. D.
, and
Ramalingam
,
V.
,
2018
, “
Experimental Investigation on Heat Transfer Augmentation of Solar Air Heater Using Shot Blasted V-Corrugated Absorber Plate
,”
Renewable Energy
,
127
, pp.
213
229
.
9.
Jabardo
,
J. M. S.
,
Ribatski
,
G.
, and
Stelute
,
E. J.
,
2009
, “
Roughness and Surface Material Effects on Nucleate Boiling Heat Transfer From Cylindrical Surfaces to Refrigerants R-134A And R-123
,”
Exp. Therm. Fluid. Sci.
,
33
(
4
), pp.
579
590
.
10.
Heebner
,
J.
,
Grover
,
R.
,
Ibrahim
,
T.
, and
Ibrahim
,
T. A.
,
2008
,
Optical Microresonators: Theory, Fabrication, And Applications
,
Springer Science & Business Media
,
London
.
11.
Nguyen
,
D. H.
, and
Ahn
,
H. S.
,
2021
, “
Comprehensive Review on Micro/Nanoscale Surface Modification Techniques for Heat Transfer Enhancement in Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
178
, p.
121601
.
12.
Bromley
,
L. A.
,
1950
, “
Heat Transfer in Stable Film Boiling
,”
Chem. Eng. Prog.
,
46
, pp.
221
227
.
13.
Lubetkin
,
S. D.
, and
Blackwell
,
M.
,
1988
, “
The Nucleation of Bubbles in Supersaturated Solutions
,”
J. Colloid Interface Sci.
,
126
(
2
), pp.
610
615
.
14.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2020
,
Heat and Mass Transfer: Fundamentals and Applications
, 6th ed.,
McGraw-Hill Global Education Holding, LLC
,
New York
.
15.
MacGregor
,
R. K.
, and
Emery
,
A. P.
,
1969
, “
Free Convection Through Vertical Plane Layers: Moderate and High Prandtl Number Fluids
,”
ASME J. Heat Transfer-Trans. ASME
,
91
(
3
), pp.
391
401
.
You do not currently have access to this content.