Abstract

The labyrinth seal is effective in reducing leakage losses at the rotor blade top in the turbine. This study investigates the variation in labyrinth seal performance at different rotational speeds, different Reynolds numbers, and different tooth front angles. Three Reynolds numbers (Re = 6000, 10,000, 15,000), five rotational speeds (Ta/Re = 0, 0.01, 0.04, 0.08, and 0.1), and three tooth front angles(75 deg, 90 deg, and 102.4 deg) have been introduced. The variation of leakage losses and heat transfer under different conditions is compared and a detailed analysis of the flow field and energy losses is performed. The discharge coefficient is increased slightly with increased rotational speed for the same Reynolds number. This is caused by the high rotational speed reducing the throttling loss and vortex loss. The high rotational speed enhances the heat transfer at the tip wall of the passage, and also weakens the heat transfer at the tooth cavity bottom. Additionally, the sealing capacity of the labyrinth is better at large tooth front angles, which is caused by the reduction of frictional losses on the stator and eddy current losses in the tooth cavity. The change in local pressure loss also affects the velocity distribution along the channel, which is the reason for the change in the local Nusselt number.

References

1.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
2.
Li
,
W.
,
Chen
,
S.
,
Liu
,
H.
,
Zhou
,
Z.
, and
Wang
,
S.
,
2020
, “
Effects of Double-Side Labyrinth Seals on Aerodynamic Performance in a Transonic Shrouded Turbine Stage
,”
ASEM J. Eng. Gas Turbines Power
,
142
(
2
), p.
021010
.
3.
Kearton
,
W. J.
,
Eng
,
D.
,
Mech
,
M. I.
, and
Keh
,
T. H.
,
1952
, “
Leakage of Air Through Labyrinth Glands of Staggered Type
,”
Proc. Inst. Mech. Eng.
,
166
(
1
), pp.
180
195
.
4.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
5.
Maffulli
,
R.
, and
Li
,
H.
,
2017
, “
Impact of Wall Temperature on Heat Transfer Coefficient and Aerodynamics for Three-Dimensional Turbine Blade Passage
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041002
.
6.
Wittig
,
S. L. K.
,
Dörr
,
L.
, and
Kim
,
S.
,
1983
, “
Scaling Effects on Leakage Losses in Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
105
(
2
), pp.
305
309
.
7.
Wittig
,
S.
,
Jacobsen
,
K.
,
Schelling
,
U.
, and
Kim
,
S.
,
1988
, “
Heat Transfer in Stepped Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
110
(
1
), pp.
63
69
.
8.
Micio
,
M.
,
Facchini
,
B.
,
Innocent
,
L.
, and
Simonetti
,
F.
,
2011
, “
Experimental Investigation on Leakage Loss and Heat Transfer in a Straight Through Labyrinth Seal
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
,
Vancouver, British Columbia
, pp.
967
979
, Paper No. GT2011-46402.
9.
Willenborg
,
K.
,
Kim
,
S.
, and
Wittig
,
S.
,
2001
, “
Effects of Reynolds Number and Pressure Ratio on Leakage Loss and Heat Transfer in a Stepped Labyrinth Seal
,”
ASME J. Turbomach.
,
123
(
4
), pp.
815
822
.
10.
Zhang
,
L.
,
Zhu
,
H.-R.
,
Liu
,
C.-L.
, and
Tong
,
F.
,
2016
, “
Experimental and Numerical Investigation on Leakage Characteristic of Stepped Labyrinth Seal
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
, Paper No. GT2016-56743.
11.
Lee
,
S.
,
Kang
,
Y.
,
Kim
,
W.
,
Kwak
,
J.
,
Kim
,
D.
, and
Jung
,
Y.
,
2021
, “
Effects of Tip Clearance, Number of Teeth, and Tooth Front Angle on the Sealing Performance of Straight and Stepped Labyrinth Seals
,”
J. Mech. Sci. Technol.
,
35
(
4
), pp.
1539
1547
.
12.
Wasilczuk
,
F.
,
Flaszynski
,
P.
,
Kaczynski
,
P.
,
Szawaba
,
R.
,
Doerffer
,
P.
, and
Marugi
,
K.
,
2019
, “
Leakage Flow Analysis in the Gas Turbine Shroud Gap
,”
Aircraft Eng. Aerosp. Technol.
,
91
(
8
), pp.
1077
1085
.
13.
Wasilczuk
,
F.
,
Flaszynski
,
P.
,
Kaczynski
,
P.
,
Szawaba
,
R.
,
Doerffer
,
P.
, and
Marugi
,
K.
,
2021
, “
Air Curtain Application for Leakage Reduction in Gas Turbine Shroud Sealing
,”
Aerosp. Sci. Technol.
,
112
, p.
106116
.
14.
Waschka
,
W.
,
Wittig
,
S.
, and
Kim
,
K.
,
1992
, “
Influence of High Rotational Speeds on the Heat Transfer and Discharge Coefficients in Labyrinth Seals
,”
ASME J. Turbomach.
,
114
(
2
), pp.
462
468
.
15.
Nayak
,
K. C.
,
2020
, “
Effect of Rotation on Leakage and Windage Heating in Labyrinth Seals With Honeycomb Lands
,”
ASME J. Eng. Gas Turbines Power
,
142
(
8
), p.
081001
.
16.
Wei
,
X.
,
Yao
,
Z.
,
Jin
,
F.
,
Wang
,
Z.
, and
Ji
,
H.
,
2023
, “
Numerical Simulation of Flow and Heat Transfer Characteristic in Straight-Through Labyrinth Seals of Aeroengines Under Eccentric and Rotating Conditions
,”
J. Mech. Sci. Technol.
,
37
(
6
), pp.
3173
3183
.
17.
Paolillo
,
R.
,
Moore
,
S.
,
Cloud
,
D.
, and
Glah
,
J.
,
2007
, “
Impact of Rotational Speed on the Discharge Characteristic of Stepped Labyrinth Seals
,”
ASME 2007 Turbo Expo: Turbine Technical Conference and Exposition
,
Montreal, Canada
, pp.
1291
1298
, Paper No. GT2007-28428.
18.
Li
,
Z.
,
Li
,
J.
,
Yan
,
X.
, and
Feng
,
Z.
,
2011
, “
Effects of Pressure Ratio and Rotational Speed on Leakage Flow and Cavity Pressure in the Staggered Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
133
(
11
), p.
114503
.
19.
Kong
,
X.
,
Liu
,
G.
,
Lei
,
Z.
,
Chang
,
R.
, and
Liu
,
Y.
,
2016
, “
Experiment on Influence of Rotational Speeds on Labyrinth Seal in Compressor Stator Well
,”
J. Aerosp. Power
,
31
(
7
), pp.
1575
1582
.
20.
Kong
,
X.
,
Liu
,
G.
,
Liu
,
Y.
, and
Zheng
,
L.
,
2017
, “
Experimental Testing for the Influences of Rotation and Tip Clearance on the Labyrinth Seal in a Compressor Stator Well
,”
Aerosp. Sci. Technol.
,
71
, pp.
556
567
.
21.
Wang
,
Z.
,
Zhang
,
B.
,
Chen
,
Y.
,
Yang
,
S.
,
Liu
,
H.
, and
Ji
,
H.
,
2022
, “
Investigation of Leakage and Heat Transfer Properties of the Labyrinth Seal on Various Rotation Speed and Geometric Parameters
,”
Coating
,
12
(
5
), p.
586
.
22.
Yan
,
X.
,
Lei
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Effect of Bending and Mushrooming Damages on Heat Transfer Characteristic in Labyrinth Seals
,”
ASME 2013 Turbine Blade Tip Symposium
,
Hamburg, Germany
, TBTS2013-2012, V001T05A001.
23.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2020
, “
Heat Transfer Characteristics in a Pin Finned Channel With Different Dimple Locations
,”
Heat Transfer Eng.
,
41
(
14
), pp.
1232
1251
.
You do not currently have access to this content.