Abstract

This research aims to create an artificial neural network (ANN) regression model for predicting the performance parameters of the perforated micro-pin fin (MPF) heat sinks for various geometric parameters and inflow conditions. A three-dimensional computational fluid dynamics (CFD) simulation system is developed to generate dataset samples under different operational conditions, which are specified using Latin hypercube sampling (LHS). An ANN model is first obtained by optimizing the model hyper-parameters, which are then deployed to learn from the input feature space that consists of perforation diameter, perforation location, and inflow velocity. For accurate training of the ANN, the model is trained over a range of uniformly distributed data points in the input feature space. The developed multi-layer model predicted Nusselt number and friction factor with the mean absolute percentage error of 4.45% and 1.80%, respectively. Subsequently, the developed surrogate model is used in the optimization study to demonstrate the application of the surrogate model. A multi-objective non-dominated sorting genetic algorithm (NSGA-II) is used to perform the optimization of the perforation location, diameter, and inflow conditions. Negative of the Nusselt number and friction factor are chosen as objectives to minimize. A Pareto front is obtained from the optimization study that shows a set of optimal solutions. Thermal performance of the perforated MPF is increased between 11.5% and 39.77%. The optimizer selected a significantly smaller hole diameter at a higher location and a faster speed to maximize the Nusselt number and minimize the friction factor.

References

1.
Nakayama
,
W.
,
1986
, “
Thermal Management of Electronic Equipment: A Review of Technology and Research Topics
,”
ASME Appl. Mech. Rev.
,
39
(
12
), pp.
1847
1868
.
2.
Alam
,
T.
, and
Kim
,
M. H.
,
2018
, “
A Comprehensive Review on Single Phase Heat Transfer Enhancement Techniques in Heat Exchanger Applications
,”
Renew. Sustain. Energy Rev.
,
81
, pp.
813
839
.
3.
Gupta
,
D.
,
Saha
,
P.
, and
Roy
,
S.
,
2021
, “
Computational Analysis of Perforation Effect on the Thermo-Hydraulic Performance of Micro Pin-Fin Heat Sink
,”
Int. J. Therm. Sci.
,
163
, p.
106857
.
4.
Lee
,
H.
,
Kang
,
M.
,
Jung
,
K. W.
,
Kharangate
,
C. R.
,
Lee
,
S.
,
Iyengar
,
M.
,
Malone
,
C.
,
Asheghi
,
M.
,
Goodson
,
K. E.
, and
Lee
,
H.
,
2021
, “
An Artificial Neural Network Model for Predicting Frictional Pressure Drop in Micro-Pin Fin Heat Sink
,”
Appl. Therm. Eng.
,
194
, p.
117012
.
5.
Kim
,
K.
,
Lee
,
H.
,
Kang
,
M.
,
Lee
,
G.
,
Jung
,
K.
,
Kharangate
,
C. R.
,
Asheghi
,
M.
,
Goodson
,
K. E.
, and
Lee
,
H.
,
2022
, “
A Machine Learning Approach for Predicting Heat Transfer Characteristics in Micro-Pin Fin Heat Sinks
,”
Int. J. Heat Mass Transf.
,
194
, p.
123087
.
6.
Qiu
,
Y.
,
Garg
,
D.
,
Kim
,
S.-M.
,
Mudawar
,
I.
, and
Kharangate
,
C. R.
,
2021
, “
Machine Learning Algorithms to Predict Flow Boiling Pressure Drop in Mini/Micro-Channels Based on Universal Consolidated Data
,”
Int. J. Heat Mass Transf.
,
178
, p.
121607
.
7.
Cho
,
E.
,
Lee
,
H.
,
Kang
,
M.
,
Jung
,
D.
,
Lee
,
G.
,
Lee
,
S.
,
Kharangate
,
C. R.
,
Ha
,
H.
,
Huh
,
S.
, and
Lee
,
H.
,
2022
, “
A Neural Network Model for Free-Falling Condensation Heat Transfer in the Presence of Non-Condensable Gases
,”
Int. J. Therm. Sci.
,
171
, p.
107202
.
8.
Naphon
,
P.
,
Wiriyasart
,
S.
,
Arisariyawong
,
T.
, and
Nakharintr
,
L.
,
2019
, “
ANN, Numerical and Experimental Analysis on the Jet Impingement Nanofluids Flow and Heat Transfer Characteristics in the Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transf.
,
131
, pp.
329
340
.
9.
Hu
,
K.
,
Lu
,
C.
,
Yu
,
B.
,
Yang
,
L.
, and
Rao
,
Y.
,
2023
, “
Optimization of Bionic Heat Sinks With Self-Organized Structures Inspired by Termite Nest Morphologies
,”
Int. J. Heat Mass Transf.
,
202
, p.
123735
.
10.
Sridharan
,
S.
,
Srikanth
,
R.
, and
Balaji
,
C.
,
2018
, “
Multi-Objective Geometric Optimization of Phase Change Material Based Cylindrical Heat Sinks With Internal Stem and Radial Fins
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
238
251
.
11.
Shanmugam
,
M.
, and
Sirisha Maganti
,
L.
,
2023
, “
Multi-Objective Optimization of Parallel Microchannel Heat Sink With Inlet/Outlet U, I, Z Type Manifold Configuration by RSM and NSGA-II
,”
Int. J. Heat Mass Transf.
,
201
, p.
123641
.
12.
Reddy
,
S. R.
,
Abdoli
,
A.
,
Dulikravich
,
G. S.
,
Pacheco
,
C. C.
,
Vasquez
,
G.
,
Jha
,
R.
,
Colaco
,
M. J.
, and
Orlande
,
H. R. B.
,
2017
, “
Multi-Objective Optimization of Micro Pin-Fin Arrays for Cooling of High Heat Flux Electronics With a Hot Spot
,”
38
(
14–15
), pp.
1235
1246
.
13.
Wan
,
W.
,
Deng
,
D.
,
Huang
,
Q.
,
Zeng
,
T.
, and
Huang
,
Y.
,
2017
, “
Experimental Study and Optimization of Pin Fin Shapes in Flow Boiling of Micro Pin Fin Heat Sinks
,”
Appl. Therm. Eng.
,
114
, pp.
436
449
.
14.
Zhao
,
J.
,
Huang
,
S.
,
Gong
,
L.
, and
Huang
,
Z.
,
2016
, “
Numerical Study and Optimizing on Micro Square Pin-Fin Heat Sink for Electronic Cooling
,”
Appl. Therm. Eng.
,
93
, pp.
1347
1359
.
15.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2014
, “
Effects of Pin Fin Shape and Configuration on the Single-Phase Heat Transfer Characteristics of Jet Impingement on Micro Pin Fins
,”
Int. J. Heat Mass Transf.
,
70
, pp.
856
863
.
16.
Lee
,
Y. J.
, and
Kim
,
S. J.
,
2021
, “
Thermal Optimization of the Pin-Fin Heat Sink With Variable Fin Density Cooled by Natural Convection
,”
Appl. Therm. Eng.
,
190
, p.
116692
.
17.
Radmard
,
V.
,
Hadad
,
Y.
,
Rangarajan
,
S.
,
Hoang
,
C. H.
,
Fallahtafti
,
N.
,
Arvin
,
C. L.
,
Sikka
,
K.
,
Schiffres
,
S. N.
, and
Sammakia
,
B. G.
,
2021
, “
Multi-Objective Optimization of a Chip-Attached Micro Pin Fin Liquid Cooling System
,”
Appl. Therm. Eng.
,
195
, p.
117187
.
18.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Thermal Optimization of PCM Based Pin Fin Heat Sinks: An Experimental Study
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
65
77
.
19.
Polat
,
M. E.
, and
Cadirci
,
S.
,
2022
, “
Artificial Neural Network Model and Multi-Objective Optimization of Microchannel Heat Sinks With Diamond-Shaped Pin Fins
,”
Int. J. Heat Mass Transf.
,
194
, p.
123015
.
20.
Manaserh
,
Y. A.
,
Gharaibeh
,
A. R.
,
Tradat
,
M. I.
,
Rangarajan
,
S.
,
Sammakia
,
B. G.
, and
Alissa
,
H. A.
,
2022
, “
Multi-Objective Optimization of 3D Printed Liquid Cooled Heat Sink With Guide Vanes for Targeting Hotspots in High Heat Flux Electronics
,”
Int. J. Heat Mass Transf.
,
184
, p.
122287
.
21.
Alperen
,
Y.
, and
Sertac
,
C.
,
2020
, “
Multi-Objective Optimization of a Micro-Channel Heat Sink Through Genetic Algorithm
,”
Int. J. Heat Mass Transf.
,
146
, p.
118847
.
22.
Gupta
,
D.
,
Saha
,
P.
, and
Roy
,
S.
,
2019
, “
Numerical Investigation on Heat Transfer Enhancement With Perforated Square Micro-Pin Fin Heat Sink for Electronic Cooling Application
,”
2019 IEEE 21st Electronics Packaging Technology Conference (EPTC 2019)
,
Marina Bay Sands, Singapore
,
Dec. 4–6
, pp.
241
246
.
23.
Gharaibeh
,
A. R.
,
Manaserh
,
Y. M.
,
Tradat
,
M. I.
,
AlShatnawi
,
F. W.
,
Schiffres
,
S. N.
, and
Sammakia
,
B. G.
,
2022
, “
Using a Multi-Inlet/Outlet Manifold to Improve Heat Transfer and Flow Distribution of a Pin Fin Heat Sink
,”
ASME J. Electron. Packag.
,
144
(
3
), p.
031017
.
24.
Chang
,
S. W.
,
Wu
,
P.-S.
, and
Wei
,
B. S.
,
2021
, “
Aerothermal Performance Improvement by Array of Pin-Fins With Spiral Wings
,”
Int. J. Therm. Sci.
,
170
, p.
107148
.
25.
Pan
,
Y.
,
Zhao
,
R.
,
Nian
,
Y.
, and
Cheng
,
W.
,
2022
, “
Study on the Flow and Heat Transfer Characteristics of Pin-Fin Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transf.
,
183
, p.
122052
.
26.
Hasani
,
M.
,
Baniasad Askari
,
I.
, and
Shahsavar
,
A.
,
2022
, “
Two-Phase Mixture Simulation of the Performance of a Grooved Helical Microchannel Heat Sink Filled With Biologically Prepared Water-Silver Nanofluid: Hydrothermal Characteristics and Irreversibility Behavior
,”
Appl. Therm. Eng.
,
202
, p.
117848
.
27.
Gupta
,
D.
,
Saha
,
P.
, and
Roy
,
S.
,
2022
, “
Multi-Objective Optimization of the Perforated Micro Pin-Fin Heat Sink Using Non-Dominated Sorting Genetic Algorithm-II Coupled With CFD Simulation
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
9
), p.
091601
.
28.
Akiba
,
T.
,
Sano
,
S.
,
Yanase
,
T.
,
Ohta
,
T.
, and
Koyama
,
M.
,
2019
, “
Optuna: A Next-Generation Hyperparameter Optimization Framework
,”
KDD'19:Proceedings of 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Anchorage, AK
,
Aug. 4–8
.
29.
Fluent
,
A.
,
2013
, “
MAN—ANSYS Fluent User’s Guide Release 15.0
,”
Knowl. Creat. Diffus. Util.
,
15317
, pp.
724
746
.
30.
Wang
,
S.-C.
,
2003
, “
Interdisciplinary Computing in Java Programming
,” p.
266
.
31.
Bala
,
R.
, and
Kumar
,
D.
,
2017
, “
Classification Using ANN: A Review
,”
Int. J. Comput. Intell. Res.
,
13
(
7
), pp.
1811
1820
.
32.
“Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms,” Available: https://apps.dtic.mil/sti/citations/AD0256582, (Accessed April 25, 2022).
33.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
34.
Srinivas
,
N.
, and
Deb
,
K.
,
1994
, “
Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
.
35.
Blank
,
J.
, and
Deb
,
K.
,
2020
, “
Pymoo: Multi-Objective Optimization in Python
,”
IEEE Access
,
8
, pp.
89497
89509
.
36.
Polat
,
M. E.
,
Ulger
,
F.
, and
Cadirci
,
S.
,
2022
, “
Multi-Objective Optimization and Performance Assessment of Microchannel Heat Sinks With Micro Pin-Fins
,”
Int. J. Therm. Sci.
,
174
, p.
107432
.
37.
Fukuda
,
T.
, and
Tsukahara
,
T.
,
2020
, “
Heat Transfer of Transitional Regime With Helical Turbulence in Annular Flow
,”
Int. J. Heat Fluid Flow
,
82
, p.
108555
.
38.
Freund
,
S.
, and
Kabelac
,
S.
,
2010
, “
Investigation of Local Heat Transfer Coefficients in Plate Heat Exchangers With Temperature Oscillation IR Thermography and CFD
,”
Int. J. Heat Mass Transf.
,
53
(
19–20
), pp.
3764
3781
.
39.
Xin
,
R. C.
, and
Tao
,
W. Q.
,
2007
, “
Numerical Prediction of Laminar Flow and Heat Transfer in Wavy Channels of Uniform Cross-Sectional Area
,”
Numer. Heat Transf.
,
14
(
4
), pp.
465
481
.
40.
Ke
,
K. C.
, and
Huang
,
M. S.
,
2021
, “
Quality Classification of Injection-Molded Components by Using Quality Indices, Grading, and Machine Learning
,”
Polymers
,
13
(
3
), p.
353
.
41.
Pai
,
S. S.
, and
Weibel
,
J. A.
,
2022
, “
Machine-Learning-Aided Design Optimization of Internal Flow Channel Cross-Sections
,”
Int. J. Heat Mass Transf.
,
195
, p.
123118
.
42.
Zhang
,
F.
,
He
,
Y.
,
Wang
,
C.
,
Liang
,
B.
,
Zhu
,
Y.
,
Gou
,
H.
,
Xiao
,
K.
, and
Lu
,
F.
,
2023
, “
A New Type of Liquid-Cooled Channel Thermal Characteristics Analysis and Optimization Based on the Optimal Characteristics of 24 Types of Channels
,”
Int. J. Heat Mass Transf.
,
202
, p.
123734
.
You do not currently have access to this content.