Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The boiling heat transfer coefficient is important information for designing thermal devices for effective thermal management. It is affected by several factors like surface roughness and wettability of the surface. So, it is necessary to create a model for the accurate prediction. This article aims to use the stacking ensemble method to predict the boiling heat transfer coefficient (BHTC). To improve the performance of the prediction of the stacking model, AdaBoost regression and Random Forest regression are chosen as the base learner, and meta estimator linear regression is selected. Datasets are generated from a pool boiling experiment of carbon nanotube and graphene oxide (CNT + GO)-coated surface. Results have depicted that the stacking method outperformed individual models. It is found that the accuracy of the stacking ensemble model is 99.1% efficient with mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) values of 0.016, 0.0004, and 0.021, respectively.

References

1.
Brumfield
,
L. A.
, and
Park
,
S.
,
2012
, “
The Effects of Asymmetric Micro Ratchets on Dynamic Contact Angle and Pool Boiling Performance
,”
ASME International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 9–15
, Vol. 45233, pp.
2079
2083
.
2.
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2021
, “
Pool Boiling Review: Part I—Fundamentals of Boiling and Relation to Surface Design
,”
Therm. Sci. Eng. Prog.
,
25
, p.
101024
.
3.
Mukherjee
,
S.
,
Ebrahim
,
S.
,
Mishra
,
P. C.
,
Ali
,
N.
, and
Chaudhuri
,
P.
,
2022
, “
A Review on Pool and Flow Boiling Enhancement Using Nanofluids: Nuclear Reactor Application
,”
Processes
,
10
(
1
), p.
177
.
4.
Mondal
,
K.
, and
Bhattacharya
,
A.
,
2021
, “
Recent Advances on Pool Boiling Heat Transfer Processes
,” arXiv:2102.05865.
5.
Ha
,
M.
, and
Graham
,
S.
,
2016
, “
Pool Boiling Enhancement Through Hierarchical Texturing of Surfaces
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Las Vegas, NV
,
May 31–June 3
, pp.
388
394
.
6.
Wang
,
C. Y.
,
Ji
,
W. T.
,
Zhao
,
C. Y.
,
Chen
,
L.
, and
Tao
,
W. Q.
,
2023
, “
Experimental Determination of the Role of Roughness and Wettability on Pool-Boiling Heat Transfer of Refrigerant
,”
Int. J. Refrig.
,
153
, pp.
205
221
.
7.
Thangavelu
,
N.
,
Duraisamy
,
S. K.
,
Mohan
,
S.
, and
Sundaresan
,
D.
,
2022
, “
Influence of Surface Roughness and Wettability of Novel Surface on Nucleate Boiling Performance in Deionized Water at Atmospheric Pressure
,”
Therm. Sci.
,
26
(
6 Part A
), pp.
4645
4656
.
8.
Roodbari
,
M.
,
Alimoradi
,
H.
,
Shams
,
M.
, and
Aghanajafi
,
C.
,
2022
, “
An Experimental Investigation of Microstructure Surface Roughness on Pool Boiling Characteristics of TiO2 Nanofluid
,”
J. Therm. Anal. Calorim.
,
147
(
4
), pp.
3283
3298
.
9.
Messer
,
M.
,
Anderson
,
K.
,
Zhang
,
X.
, and
Abbasi
,
B.
,
2022
, “
Effect of Surface Roughness on Mixed Salt Crystallization Fouling in Pool Boiling
,”
Desalination and Water Treatment
,
274
, pp.
219
229
.
10.
Yeom
,
H.
,
Gutierrez
,
E.
,
Jo
,
H.
,
Zhou
,
Y.
,
Mondry
,
K.
,
Sridharan
,
K.
, and
Corradini
,
M.
,
2020
, “
Pool Boiling Critical Heat Flux Studies of Accident Tolerant Fuel Cladding Materials
,”
Nucl. Eng. Des.
,
370
, p.
110919
.
11.
Mudhafar
,
M. A.
,
Jhang
,
B. W.
, and
Sin
,
Y. Y.
,
2022
, “
Experimental Comparison of Pool Boiling Performance Between Cu-Plain Surface and Functionalized Graphene Layers
,”
Int. J. Refrig.
,
139
, pp.
1
12
.
12.
Wu
,
Z.
,
Cao
,
Z.
, and
Sundén
,
B.
,
2019
, “
Saturated Pool Boiling Heat Transfer of Acetone and HFE-7200 on Modified Surfaces by Electrophoretic and Electrochemical Deposition
,”
Appl. Energy
,
249
, pp.
286
299
.
13.
Bharadwaj
,
A.
, and
Misra
,
R. D.
,
2023
, “
Study of Pool Boiling on Hydrophilic Surfaces Developed Using Electric Discharge Coating Technique
,”
Appl. Therm. Eng.
,
234
, p.
121267
.
14.
Deb
,
S.
,
Das
,
M.
,
Das
,
D. C.
,
Pal
,
S.
,
Das
,
A. K.
, and
Das
,
R.
,
2021
, “
Significance of Surface Modification on Nucleate Pool Boiling Heat Transfer Characteristics of Refrigerant R-141b
,”
Int. J. Heat Mass Transfer
,
170
, p.
120994
.
15.
Rafea
,
M. A.
,
Eid
,
A.
, and
Mustapha
,
N.
,
2023
, “
The Effect of Annealing on the Structure, Morphology, and Optical Properties of CO3O4 Thin Films Prepared Using a Modified Dip Coating Technique
,”
Mater. Sci. Eng., B
,
290
, p.
116294
.
16.
Ortuondo
,
A.
,
Serrano
,
Á
,
Nikulin
,
A.
,
Bartolomé
,
L.
,
Grosu
,
Y.
,
Gómez
,
E.
,
López
,
G. A.
, and
Palomo del Barrio
,
E.
,
2023
, “
Polymeric Surface Coatings With Nanoporous Microparticles for Boiling Intensification in Advanced Steam Accumulators
,”
Int. J. Thermofluids
,
17
, p.
100308
.
17.
Yuan
,
X.
,
Du
,
Y.
, and
Su
,
J.
,
2022
, “
Approaches and Potentials for Pool Boiling Enhancement With Superhigh Heat Flux on Responsive Smart Surfaces: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
156
, p.
111974
.
18.
Chen
,
Q.
,
Yu
,
M.
,
Cao
,
K.
, and
Chen
,
H.
,
2022
, “
Thermal Conductivity and Wear Resistance of Cold Sprayed Cu-Ceramic Phase Composite Coating
,”
Surf. Coat. Technol.
,
434
, p.
128135
.
19.
Kalita
,
S.
,
Sen
,
P.
,
Sen
,
D.
,
Das
,
S.
, and
Saha
,
B. B.
,
2024
, “
Phase Transition Heat Transfer Enhancement of a Graphene-Coated Microporous Copper Surface Using Two-Step Electrodeposition Method
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
7
), p. 071007.
20.
Jaikumar
,
A.
,
Gupta
,
A.
,
Kandlikar
,
S. G.
,
Yang
,
C. Y.
, and
Su
,
C. Y.
,
2017
, “
Scale Effects of Graphene and Graphene Oxide Coatings on Pool Boiling Enhancement Mechanisms
,”
Int. J. Heat Mass Transfer.
,
109
, pp.
357
366
.
21.
Zheng
,
X.
, and
Park
,
C. W.
,
2015
, “
Experimental Study of the Sintered Multi-Walled Carbon Nanotube/Copper Microstructures for Boiling Heat Transfer
,”
Appl. Therm. Eng.
,
86
, pp.
14
26
.
22.
Rahul
,
N.
,
Kalita
,
S.
,
Sen
,
P.
,
Shil
,
B.
, and
Sen
,
D.
,
2024
, “
Enhanced Pool Boiling Heat Transfer Characteristics on Microstructured Copper Surfaces Coated With Hybrid Nanofluid
,”
J. Therm. Anal. Calorim.
,
149
(
12
), pp.
6281
6293
.
23.
Kumar
,
R.
,
Sen
,
D.
, and
Mandal
,
S. K.
,
2024
, “
Pool Boiling of CNT+ GO Nano Materials Coated Copper Substrate: An Experimental Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
2
), p.
021011
.
24.
Serrao
,
B. P.
,
Kim
,
K. M.
, and
Duarte
,
J. P.
,
2023
, “
Analysis of the Effects of Different Nanofluids on Critical Heat Flux Using Artificial Intelligence
,”
Energies
,
16
(
12
), p.
4762
.
25.
Rashidi
,
M. M.
,
Nazari
,
M. A.
,
Harley
,
C.
,
Momoniat
,
E.
,
Mahariq
,
I.
, and
Ali
,
N.
,
2022
, “
Applications of Machine Learning Methods for Boiling Modeling and Prediction: A Comprehensive Review
,”
Chem. Thermodyn. Therm. Anal.
,
8
, p.
100081
.
26.
McClure
,
E. R.
, and
Carey
,
V. P.
,
2021
, “
Genetic Algorithm and Deep Learning to Explore Parametric Trends in Nucleate Boiling Heat Transfer Data
,”
ASME J. Heat Transfer
,
143
(
12
), p.
121602
.
27.
Dunlap
,
C.
,
Pandey
,
H.
, and
Hu
,
H.
,
2022
, “
Supervised and Unsupervised Learning Models for Detection of Critical Heat Flux During Pool Boiling
,”
Proceedings of the ASME 2022 Heat Transfer Summer Conference Collocated With the ASME 2022 16th International Conference on Energy Sustainability. ASME 2022 Heat Transfer Summer Conference
,
Philadelphia, PA
,
July 11–13
,
ASME
, p.
V001T08A004
.
28.
Barathula
,
S.
,
Chaitanya
,
S. K.
, and
Srinivasan
,
K.
,
2023
, “
Evaluation of Machine Learning Models in the Classification of Pool Boiling Regimes up to Critical Heat Flux Based on Boiling Acoustics
,”
Int. J. Heat Mass Transfer
,
201
(Part 2), p.
123623
.
29.
Hobold
,
G. M.
, and
da Silva
,
A. K.
,
2018
, “
Machine Learning Classification of Boiling Regimes With Low Speed, Direct and Indirect Visualization
,”
Int. J. Heat Mass Transfer
,
125
, pp.
1296
1309
.
30.
Cabarcos
,
A.
,
Paz
,
C.
,
Suarez
,
E.
, and
Vence
,
J.
,
2024
, “
Application of Supervised Learning Algorithms for Temperature Prediction in Nucleate Flow Boiling
,”
Appl. Therm. Eng.
,
240
, p.
122155
.
31.
He
,
Y.
,
Hu
,
C.
,
Li
,
H.
,
Hu
,
X.
, and
Tang
,
D.
,
2022
, “
Reliable Predictions of Bubble Departure Frequency in Subcooled Flow Boiling: A Machine Learning-Based Approach
,”
Int. J. Heat Mass Transfer
,
195
, p.
123217
.
32.
Sikora
,
R.
,
2015
, “A Modified Stacking Ensemble Machine Learning Algorithm Using Genetic Algorithms,”
Handbook of Research on Organizational Transformations Through Big Data Analytics
,
IGI Global
, pp.
43
53
.
33.
Mariño
,
L. M. P.
,
Ortiz-Díaz
,
A. A.
, and
Vasconcelos
,
G. C.
,
2020
, “Comparative Study of Fast Stacking Ensembles Families Algorithms,”
Brazilian Conference on Intelligent Systems
,
R.
Cerri
and
R. C.
Prati
, eds.,
Springer International Publishing
,
Cham
, pp.
456
470
.
34.
Geetha
,
G.
, and
Prasad
,
K. M.
,
2023
, “
Stacking Ensemble Learning-Based Convolutional Gated Recurrent Neural Network for Diabetes Miletus
,”
Intell. Autom. Soft Comput.
,
36
(
1
), pp.
703
718
.
35.
Daryayehsalameh
,
B.
,
Ayari
,
M. A.
,
Tounsi
,
A.
,
Khandakar
,
A.
, and
Vaferi
,
B.
,
2022
, “
Differentiation Among Stability Regimes of Alumina-Water Nanofluids Using Smart Classifiers
,”
Adv. Nano Res.
,
12
(
5
), pp.
489
499
.
36.
Liu
,
Z.
,
Fu
,
R.
, and
Yuying
,
Y.
,
2022
, “
Preparation and Evaluation of Stable Nanofluids for Heat Transfer Application
,”
Adv. Nanofluid Heat Transfer
, Chapter 2, pp.
25
57
.
37.
Jin
,
C.
,
Wu
,
Q.
,
Yang
,
G.
,
Zhang
,
H.
, and
Zhong
,
Y.
,
2021
, “
Investigation on Hybrid Nanofluids Based on Carbon Nanotubes Filled With Metal Nanoparticles: Stability, Thermal Conductivity, and Viscosity
,”
Powder Technol.
,
389
, pp.
1
10
.
38.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Enhanced Pool Boiling Heat Transfer Mechanisms for Selectively Sintered Open Microchannels
,”
Int. J. Heat Mass Transfer
,
88
, pp.
652
661
.
39.
Mandlik
,
P. S.
,
Landge
,
A. S.
,
Ingole
,
M. A.
, and
Bhosale
,
S. V.
,
2023
, “
Synthesis of Highly Superhydrophilic Cu2O Film Using Dip Coating Method
,”
Mater. Today: Proc.
.
40.
Yim
,
K.
,
Lee
,
J.
,
Naccarato
,
B.
, and
Kim
,
K. J.
,
2019
, “
Surface Wettability Effect on Nucleate Pool Boiling Heat Transfer With Titanium Oxide (TiO2) Coated Heating Surface
,”
Int. J. Heat Mass Transfer
,
133
, pp.
352
358
.
41.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids
,”
J. Nanopart. Res.
,
7
(
2–3
), pp.
265
274
.
42.
Chopkar
,
M.
,
Das
,
A. K.
,
Manna
,
I.
, and
Das
,
P. K.
,
2008
, “
Pool Boiling Heat Transfer Characteristics of ZrO2–Water Nanofluids From a Flat Surface in a Pool
,”
Heat Mass Transfer
,
44
(
8
), pp.
999
1004
.
43.
Azam
,
M.
,
Dikici
,
S.
,
Roman
,
S.
,
Mehmood
,
A.
,
Chaudhry
,
A. A.
,
U Rehman
,
I.
,
MacNeil
,
S.
, and
Yar
,
M.
,
2019
, “
Addition of 2-Deoxy-d-Ribose to Clinically Used Alginate Dressings Stimulates Angiogenesis and Accelerates Wound Healing in Diabetic Rats
,”
J. Biomater. Appl.
,
34
(
4
), pp.
463
475
.
44.
Ding
,
W.
, and
Wu
,
S.
,
2019
, “
ABC-Based Stacking Method for Multilabel Classification
,”
Turk. J. Electr. Eng. Comput. Sci.
,
27
(
6
), pp.
4231
4245
.
45.
Kansara
,
D.
,
Singh
,
R.
,
Sanghvi
,
D.
, and
Kanani
,
P.
,
2018
, “
Improving Accuracy of Real Estate Valuation Using Stacked Regression
,”
Int. J. Eng. Dev. Res.
,
6
(
3
), pp.
571
577
. Corpus ID: 231772576
46.
Shanmugasundar
,
G.
,
Vanitha
,
M.
,
Cep
,
R.
,
Kumar
,
V.
,
Kalita
,
K.
, and
Ramachandran
,
M.
,
2021
, “
A Comparative Study of Linear, Random Forest and AdaBoost Regressions for Modeling Non-Traditional Machining
,”
Processes
,
9
(
11
), pp.
2015
.
47.
Zabirov
,
A. R.
,
Smirnova
,
A. A.
,
Feofilaktova
,
Y. M.
,
Shevchenko
,
R. A.
,
Shevchenko
,
S. A.
,
Yashnikov
,
D. A.
, and
Soloviev
,
S. L.
,
2020
, “
Using Neural Networks in Atomic Energy Thermophysical Problems
,”
Therm. Eng.
,
67
(
8
), pp.
497
508
.
48.
Kanin
,
E. A.
,
Osiptsov
,
A. A.
,
Vainshtein
,
A. L.
, and
Burnaev
,
E. V.
,
2019
, “
A Predictive Model for Steady-State Multiphase Pipe Flow: Machine Learning on Lab Data
,”
J. Pet. Sci. Eng.
,
180
, pp.
727
746
.
49.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids
,”
ASME Trans. Am. Soc. Mech. Eng.
,
74
(
6
), pp.
969
975
.
50.
Elkholy
,
A.
, and
Kempers
,
R.
,
2020
, “
Enhancement of Pool Boiling Heat Transfer Using 3D-Printed Polymer Fixtures
,”
Exp. Therm. Fluid. Sci.
,
114
, p.
110056
.
51.
Das
,
A. K.
,
Das
,
P. K.
, and
Saha
,
P.
,
2007
, “
Nucleate Boiling of Water From Plain and Structured Surfaces
,”
Exp. Therm Fluid Sci.
,
31
(
8
), pp.
967
977
.
52.
Sen
,
P.
,
Kalita
,
S.
,
Sen
,
D.
,
Das
,
A. K.
, and
Saha
,
B. B.
,
2022
, “
Pool Boiling Heat Transfer and Bubble Dynamics of Modified Copper Micro-Structured Surfaces
,”
Int. Commun. Heat Mass Transfer
,
134
, p.
106039
.
You do not currently have access to this content.