Abstract

To improve the heat dissipation and cooling effect of the box and ensure the safe and stable operation of the gas turbine, research on the control and optimization of heat dissipation within the main box of the gas turbine has been carried out. Considering solar radiation, four evaluation indexes, namely, the percentage of the high-temperature zone, the percentage of the high-speed zone, the average field synergy angle, and the temperature inhomogeneity, are proposed to study the internal flow heat transfer characteristics of the gas turbine box, and an optimization scheme for the internal structure of the box-loaded body is proposed by using the orthogonal test method to improve the ventilation and heat dissipation performance. The results show that the percentage of high-temperature zone in the box body is 2.3%, which is mainly distributed near the junction of gas turbine and inlet worm gear; the average field synergy angle in this region is as high as 79.49 deg, and the temperature inhomogeneity reaches 0.98, which makes the heat dissipation and cooling effect poorer and is easy to form a localized high temperature; based on the above research to carry out the optimization of the box body structure, the percentage of high-temperature zone is reduced by 95.7% after optimization, and the average field synergy angle and temperature inhomogeneity are reduced to 72.88 deg and 0.57, respectively, so that the heat dissipation effect has been significantly improved.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Dai
,
Y.
,
Gao
,
C.
, and
Li
,
B.
,
2023
, “
Assessment of the Effectiveness of Ventilation for Gas Turbine Generator Set Safety
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
237
(
5
), pp.
1125
1137
.
2.
Santon
,
R. C.
,
Kidger
,
J. W.
, and
Lea
,
C. J.
,
2002
, “
Safety Developments in Gas Turbine Power Applications
,”
Proc. ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
,
June 3–6
, pp.
959
966
.
3.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Entrainment of Air Into an Infrared Suppression (IRS) Device Using Circular and Non-Circular Multiple Nozzles
,”
Comput. Fluids
,
114
, pp.
26
38
.
4.
Chen
,
Q.
, and
Birk
,
A. M.
,
2009
, “
Experimental Study of Oblong Exhaust Ejectors With Multi-Ring Oblong Entraining Diffusers
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p.
062302
.
5.
Santon
,
R. C.
,
Lea
,
C. J.
,
Lewis
,
M. J.
,
Pritchard
,
D. K.
,
Thyer
,
A. M.
, and
Sinai
,
Y.
,
2000
, “
Studies Into the Role of Ventilation and the Consequences of Leaks in Gas Turbine Power Plant Acoustic Enclosures and Turbine Halls
,”
Process Saf. Environ. Prot.
,
78
(
3
), pp.
175
183
.
6.
Refaey
,
H. A.
,
Refaey
,
A. M.
,
Kandil
,
M. M.
, and
Moawed
,
M. A.
,
2018
, “
Geometrical Study of Ventilation System Openings of Pump Room in Nuclear Power Plant
,”
Alexandria Eng. J.
,
57
(
4
), pp.
3483
3491
.
7.
Varbanets
,
R. A. E.
,
Zalozh
,
V. I.
,
Shakhov
,
A. V.
,
Savelieva
,
I. V.
, and
Piterska
,
V. M.
,
2020
, “
Determination of Top Dead Centre Location Based on the Marine Diesel Engine Indicator Diagram Analysis
,”
Diagnostyka
,
21
(
1
), pp.
51
60
.
8.
Yerram
,
R.
,
Watkins
,
R.
, and
Ponnuraj
,
B.
,
2021
, “
Aeroderivative Gas Turbine Enclosure Ventilation System
,”
Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 2C: Turbomachinery— Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions
,
Virtual, Online
,
June 7–11
, ASME, p. V02CT34A014.
9.
Ponnuraj
,
B.
,
Sultanian
,
B. K.
,
Novori
,
A.
, and
Pecchi
,
P.
,
2003
, “
3D CFD Analysis of an Industrial Gas Turbine Compartment Ventilation System
,”
ASME 2003 International Mechanical Engineering Congress and Exposition
,
Washington, DC
,
Nov. 15–21
, pp.
67
76
.
10.
Graf
,
E.
,
Luce
,
T.
, and
Willett
,
F.
,
2005
, “
Design Improvements Suggested by Computational Flow and Thermal Analyses for the Cooling of Marine Gas Turbine Enclosures
,”
ASME Turbo Expo 2005: Power for Land, Sea, and Air
,
Reno, NV
,
June 6–9
, pp.
587
593
.
11.
Vahidi
,
D.
,
Bagheri
,
H.
, and
Glezer
,
B.
,
2006
, “
Numerical and Experimental Study of Ventilation for Gas Turbine Package Enclosure
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, pp.
607
616
.
12.
Kowalski
,
J.
,
Mare
,
F.
,
Theis
,
S.
,
Wiedermann
,
A.
,
Lange
,
M.
, and
Mailach
,
R.
,
2019
, “
Investigation of the Ventilation Flow in a Gas Turbine Package Enclosure
,”
13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Lausanne, Switzerland
,
Apr. 8–12
.
13.
Madsen
,
S.
, and
Bakken
,
L. E.
,
2018
, “
Gas Turbine Fouling Offshore: Effective Online Water Wash Through High Water-to-Air Ratio
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041015
.
14.
Pierobon
,
L.
,
Chan
,
R.
,
Li
,
X.
,
Iyengar
,
K.
,
Haglind
,
F.
, and
Ydstie
,
E.
,
2016
, “
Model Predictive Control of Offshore Power Stations With Waste Heat Recovery
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
071801
.
15.
Kothakapu
,
D.
, and
Avishetti
,
S.
,
2014
, “
Gas Turbine Compartment Ventilation System
,”
ASME 2014 Gas Turbine India Conference
,
New Delhi, India
,
Dec. 15–17
.
16.
Shi
,
H.
,
Zhang
,
Q.
,
Liu
,
M.
,
Yang
,
K.
, and
Yuan
,
J.
,
2022
, “
Numerical Study of the Ejection Cooling Mechanism of Ventilation for a Marine Gas Turbine Enclosure
,”
Polish Marit. Res
,
29
(
3
), pp.
119
127
.
17.
Shi
,
H.
,
Zheng
,
R.
,
Zhang
,
Q.
,
Yuan
,
J.
,
Wang
,
R.
,
Cheng
,
M.
, and
Zou
,
Y. J. B.
,
2023
, “
Numerical Investigation of Multi-Nozzle Ejector Device With Inclined Nozzles for Marine Gas Turbine
,”
Brodogradnja
,
74
(
4
), pp.
1
15
.
18.
Mohanty
,
A.
,
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2020
, “
Natural Convection Cooling of an Infrared Suppression Device (IRS) With Conical Funnels—A Computational Approach
,”
Int. Commun. Heat Mass Transf
,
118
, p.
104891
.
19.
Ghaemi
,
H.
,
2021
, “
Performance and Emission Modelling and Simulation of Marine Diesel Engines Using Publicly Available Engine Data
,”
Pol. Marit. Res.
,
28
(
4
), pp.
63
87
.
20.
Lucherini
,
G.
,
Minotti
,
S.
,
Ragni
,
G.
, and
Bologna
,
F.
,
2018
, “
Experimental and Numerical Investigation on Gas Turbine Package Scale Model
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
.
21.
Bagheri
,
H.
, and
Vahidi
,
D.
,
2006
, “
Ventilation of Gas Turbine Package Enclosures: Design Evaluation Procedure
,”
25th International Conference on Offshore Mechanics and Arctic Engineering
,
Hamburg, Germany
,
June 4–9
, pp.
607
613
.
22.
Dou
,
X.
,
Xie
,
D.
,
Wang
,
Z.
,
Xiao
,
P.
, and
Wang
,
H.
,
2021
, “
Improved Buoyancy-Driver Hybrid Ventilation System for Multiple-Heat-Source Industrial Buildings
,”
Case Stud. Therm. Eng.
,
26
, p.
101059
.
23.
Fang
,
H.
,
Li
,
K.
,
Wu
,
G.
,
Cheng
,
R.
,
Zhang
,
Y.
, and
Yang
,
Q.
,
2020
, “
A CFD Analysis on Improving Lettuce Canopy Airflow Distribution in a Plant Factory Considering the Crop Resistance and LEDs Heat Dissipation
,”
Biosyst. Eng.
,
200
, pp.
1
12
.
24.
Kim
,
K.
,
Yoon
,
J.-Y.
,
Kwon
,
H.-J.
,
Han
,
J.-H.
,
Son
,
J. E.
,
Nam
,
S.-W.
,
Giacomelli
,
G.
, and
Lee
,
I. B.
,
2008
, “
3-D CFD Analysis of Relative Humidity Distribution in Greenhouse With a Fog Cooling System and Refrigerative Dehumidifiers
,”
Biosyst. Eng.
,
100
(
2
), pp.
245
255
.
25.
Zhang
,
Z.
,
Zhang
,
X.
,
Li
,
B.
, and
Sun
,
P.
,
2016
, “
Optimization Design of Cooling Structure for Industrial Gas Turbine Case Module
,”
J. Therm. Sci. Technol.
,
15
(
5
), pp.
424
430
.
26.
Wang
,
Z.
,
Huang
,
Z.
,
Li
,
T.
,
Wang
,
S.
,
Li
,
G.
, and
Chen
,
Z.
,
2023
, “
Heat Transfer Characteristics and Deformation Effects of Compressor Air-Cooled Cylinder Based on Heat-Flow-Solid Coupling
,”
Appl. Therm. Eng
,
228
, p.
120395
.
27.
Zhang
,
G.
,
Huang
,
Z.
,
Wang
,
Z.
,
Wang
,
S.
,
Wang
,
J.
,
Li
,
T.
, and
Li
,
G.
,
2023
, “
Heat Transfer-Deformation Analysis and Optimization of Air-Cooled Reciprocating Compressor Cylinders Under Heat-Flow-Solid Coupling
,”
Therm. Sci. Eng. Prog.
,
46
, p.
102215
.
28.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
,
1998
, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
41
(
14
), pp.
2221
2225
.
29.
Kurz
,
R.
,
Mendoza
,
R.
,
Burnes
,
D.
,
Saxena
,
P.
, and
Alexander
,
S.
,
2018
, “
On Gas Turbine Safety in Offshore Operations
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
.
You do not currently have access to this content.