Abstract

The effects of condenser length and evaporator/condenser elevation on the performance of a loop heat pipe (LHP) in a gravity field were investigated, respectively, as well as their coupling effect. The refrigerant R40 was selected, and the condenser length was altered by changing the number of fins connected to the water-cooled plates. The experiments were conducted at three evaporator/condenser elevations: zero elevation, favorable elevation, and adverse elevation. The experimental results indicated that the evaporator temperatures of LHP with three different condenser lengths are very close when the LHP operates in variable conductance mode (VCM). However, an excessively long condenser will increase the LHP thermal resistance in VCM. In constant conductance mode (CCM), the longer the condenser, the lower the evaporator temperature. As the heat load increases, the LHP first exhibits gravity-driven mode and then capillarity-gravity-driven mode at a favorable elevation. The positive coupling effect on reducing the evaporator temperature by extending the condenser length and running at a favorable elevation manifests that the influence of condenser length is very small in gravity-driven mode, while in capillarity-gravity-driven mode, the effect of operating at a favorable elevation gets weakened, and the positive effects of the two factors cannot be simply calculated by the linear superposition principle. Additionally, reverse flow and flash evaporation were also observed and analyzed in depth. These results and conclusions can be used to guide the design of the condenser and the installation of LHP for ground applications.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Ku
,
J.
,
1999
, “
Operating Characteristics of Loop Heat Pipes
,”
Proceedings of International Conference on Evolvable Systems
,
Denver, CO
.
2.
Grob
,
E. W.
,
2010
, “
Mission Performance of the GLAS Thermal Control System-7 Years in Orbit
,”
International Conference on Environmental Systems
,
Barcelona, Spain
,
July 11–15
.
3.
Nadalini
,
R.
, and
Bodendieck
,
F.
,
2006
, “
The Thermal Control System for a Network Mission on Mars: The Experience of the Netlander Mission
,”
Acta Astronaut.
,
58
(
11
), pp.
564
575
.
4.
Maydanik
,
Y. F.
,
2005
, “
Loop Heat Pipes
,”
Appl. Therm. Eng.
,
25
(
5–6
), pp.
635
657
.
5.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
, and
Chernysheva
,
M. A.
,
2020
, “
Investigation of Thermal Characteristics of a Loop Heat Pipe in a Wide Range of External Conditions
,”
Int. J. Heat Mass Transfer
,
147
, p.
118967
.
6.
Chernysheva
,
M. A.
,
Yushakova
,
S. I.
, and
Maydanik
,
Y. F.
,
2014
, “
Copper–Water Loop Heat Pipes for Energy-Efficient Cooling Systems of Supercomputers
,”
Energy
,
69
, pp.
534
542
.
7.
Zhu
,
K.
,
Li
,
X.
,
Li
,
H.
,
Yang
,
Z.
, and
Wang
,
Y.
,
2019
, “
Experimental Investigation on the Effect of Heat Sink Temperature on Operational Characteristics of a New-Type Loop Heat Pipe
,”
Energy Procedia
,
158
, pp.
2423
2429
.
8.
Chernysheva
,
M. A.
,
Yushakova
,
S. I.
, and
Maydanik
,
Y. F.
,
2015
, “
Effect of External Factors on the Operating Characteristics of a Copper–Water Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
81
, pp.
297
304
.
9.
Xiong
,
K.
,
Meng
,
L.
,
Wang
,
S.
, and
Zhang
,
L. W.
,
2022
, “
Experimental Investigation on Thermal Characteristics of a Novel Loop Heat Pipe for Cooling High Heat Flux Electronic Chips
,”
Int. J. Heat Mass Transfer
,
187
, p.
122569
.
10.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
, and
Chernysheva
,
M. A.
,
2017
, “
Experimental Study of an Ammonia Loop Heat Pipe With a Flat Disk-Shaped Evaporator Using a Bimetal Wall
,”
Appl. Therm. Eng.
,
126
, pp.
643
652
.
11.
Bartuli
,
E.
,
Vershinin
,
S.
, and
Maydanik
,
Y. F.
,
2013
, “
Visual and Instrumental Investigations of a Copper–Water Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
61
, pp.
35
40
.
12.
Cho
,
H.
,
Jin
,
L.
, and
Jeong
,
S.
,
2020
, “
Experimental Investigation on Performances and Characteristics of Nitrogen-Charged Cryogenic Loop Heat Pipe With Wick-Mounted Condenser
,”
Cryogenics
,
105
, p.
102970
.
13.
Zhang
,
X.
,
Huo
,
J.
, and
Wang
,
S.
,
2012
, “
Experimental Investigation on Temperature Oscillation in a Miniature Loop Heat Pipe With Flat Evaporator
,”
Exp. Therm. Fluid. Sci.
,
37
, pp.
29
36
.
14.
Wang
,
S.
,
Huo
,
J.
,
Zhang
,
X.
, and
Lin
,
Z.
,
2012
, “
Experimental Study on Operating Parameters of Miniature Loop Heat Pipe With Flat Evaporator
,”
Appl. Therm. Eng.
,
40
, pp.
318
325
.
15.
Wan
,
Z.
,
Wang
,
X.
, and
Tang
,
Y.
,
2012
, “
Condenser Design Optimization and Operation Characteristics of a Novel Miniature Loop Heat Pipe
,”
Energy Convers. Manage.
,
64
, pp.
35
42
.
16.
Yan
,
K.
,
Li
,
N.
,
Zhao
,
R.
,
Wu
,
Y.
, and
Xie
,
R.
,
2021
, “
Visualization Study on the Condensation in a Propylene Loop Heat Pipe Operating at Condenser Temperatures Between 153 and 283 K
,”
Appl. Therm. Eng.
,
185
, p.
116349
.
17.
Bai
,
L.
,
Lin
,
G.
,
Zhang
,
H.
, and
Wen
,
D.
,
2009
, “
Mathematical Modeling of Steady-State Operation of a Loop Heat Pipe
,”
Appl. Therm. Eng.
,
29
(
13
), pp.
2643
2654
.
18.
Li
,
H.
,
Tang
,
Y.
,
Yuan
,
W.
, and
Zhou
,
R.
,
2017
, “
Numerical Analysis on Heat Transfer of a Complete Anti-Gravity Loop-Shaped Heat Pipe
,”
Int. J. Heat Mass Transfer
,
109
, pp.
824
834
.
19.
Hashimoto
,
M.
,
Akizuki
,
Y.
,
Sato
,
K.
,
Ueno
,
A.
, and
Nagano
,
H.
,
2022
, “
Proposal, Transient Model, and Experimental Verification of Loop Heat Pipe as Heating Device for Electric-Vehicle Batteries
,”
Appl. Therm. Eng.
,
211
, p.
118432
.
20.
Singh
,
R.
,
Mochizuki
,
M.
,
Mashiko
,
K.
, and
Nguyen
,
T.
,
2011
, “
Heat Pipe Based Cold Energy Storage Systems for Datacenter Energy Conservation
,”
Energy
,
36
(
5
), pp.
2802
2811
.
21.
Jouhara
,
H.
,
Ajji
,
Z.
,
Koudsi
,
Y.
,
Ezzuddin
,
H.
, and
Mousa
,
N.
,
2013
, “
Experimental Investigation of an Inclined-Condenser Wickless Heat Pipe Charged with Water and an Ethanol–Water Azeotropic Mixture
,”
Energy
,
61
, pp.
139
147
.
22.
Saatci
,
A. M.
,
Olwi
,
I. A.
,
Al-Hindi
,
R. R.
,
Khalifa
,
A. M.
, and
Akyurt
,
M.
,
1989
, “
Passive Transport of Solar Energy Downward by Heat Pipes
,”
Energy
,
14
(
7
), pp.
383
392
.
23.
Yu
,
M.
,
Chen
,
F.
,
Zheng
,
S.
,
Zhou
,
J.
,
Zhao
,
X.
,
Wang
,
Z.
,
Li
,
G.
, et al
,
2019
, “
Experimental Investigation of a Novel Solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal (MC-LHP-PV/T) System for Heat and Power Generation
,”
Appl. Energy
,
256
, p.
113929
.
24.
Chen
,
Y.
,
Groll
,
M.
,
Mertz
,
R.
,
Maydanik
,
Y. F.
, and
Vershinin
,
S. V.
,
2005
, “
Steady-State and Transient Performance of a Miniature Loop Heat Pipe
,”
ASME 3rd International Conference on Microchannels and Minichannels
,
Toronto, Ontario
,
Canada, June 13–15, 2005
, pp.
183
189
.
25.
Kaya
,
T.
, and
Ku
,
J.
,
1999
, “
A Parametric Study of Performance Characteristics of Loop Heat Pipes
,” SAE Technical Paper, No. 1999-01-2006.
26.
Zhang
,
H.
,
Lin
,
G.
,
Ding
,
T.
,
Yao
,
W.
,
Shao
,
X.
,
Sudakov
,
R. G.
, and
Maidanik
,
Y. F.
,
2005
, “
Investigation on Startup Behaviors of a Loop Heat Pipe
,”
J. Thermophys. Heat Transfer
,
19
(
4
), pp.
509
518
.
27.
Wang
,
H.
,
Lin
,
G.
,
Shen
,
X.
,
Bai
,
L.
,
Yang
,
R.
, and
Wen
,
D.
,
2020
, “
Effect of Evaporator/Condenser Elevations on a Loop Heat Pipe With Non-Condensable gas
,”
Appl. Therm. Eng.
,
180
, p.
115711
.
28.
Pastukhov
,
V. G.
, and
Maydanik
,
Y. F.
,
2023
, “
Temperature Control of a Heat Source Using a Loop Heat Pipe Integrated With a Thermoelectric Converter
,”
Int. J. Therm. Sci.
,
184
, p.
108012
.
29.
Launay
,
S.
,
Sartre
,
V.
, and
Bonjour
,
J.
,
2008
, “
Analytical Model for Characterization of Loop Heat Pipes
,”
J. Thermophys. Heat Transfer
,
22
(
4
), pp.
623
631
.
30.
Liu
,
C.
,
Xie
,
R.
,
Li
,
N.
,
Lu
,
D.
,
Hong
,
F.
, and
Wu
,
Y.
,
2020
, “
Experimental Study of Loop Heat Pipes With Different Working Fluids in 190–260 K
,”
Appl. Therm. Eng.
,
178
, p.
115530
.
31.
Liu
,
C.
,
Xie
,
R.
,
Li
,
N.
,
Xu
,
G.
, and
Dong
,
D.
,
2021
, “
Visualization of Compensator and Evaporator of a Loop Heat Pipe Under Different Heating Methods
,”
Chem. Ind. Eng. Prog.
,
40
(
5
), pp.
2401
2415
. https://hgjz.cip.com.cn
32.
Chuang
,
P.-Y. A.
,
Cimbala
,
J. M.
, and
Brenizer
,
J. S.
,
2014
, “
Experimental and Analytical Study of a Loop Heat Pipe at a Positive Elevation Using Neutron Radiography
,”
Int. J. Therm. Sci.
,
77
, pp.
84
95
.
33.
Li
,
C.
,
Liu
,
Z.
, and
Zhang
,
X.
,
2022
, “
Steady-State Operating Characteristics Analysis of Loop Heat Pipes With Flat-Plate Evaporator
,”
Ther. Sci. Eng. Prog.
,
28
, p.
101070
.
34.
Liu
,
Z.
,
Wang
,
D.
,
Jiang
,
C.
,
Yang
,
J.
, and
Liu
,
W.
,
2015
, “
Experimental Study on Loop Heat Pipe With Two-Wick Flat Evaporator
,”
Int. J. Therm. Sci.
,
94
, pp.
9
17
.
35.
Zheng
,
S.
,
Lin
,
B.
,
Zhao
,
C.
,
Zhou
,
X.
,
Li
,
N.
, and
Dong
,
D.
,
2023
, “
Numerical Investigation With Experimental Validation of Heat and Mass Transfer During Evaporation in the Porous Wick Within a Loop Heat Pipe
,”
Energies
,
16
(
5
), p.
2088
.
36.
Vershinin
,
S. V.
, and
Maydanik
,
Y. F.
,
2007
, “
Hysteresis Phenomena in Loop Heat Pipes
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
962
968
.
37.
Feng
,
J.
,
Lin
,
G.
, and
Bai
,
L.
,
2009
, “
Experimental Investigation on Operating Instability of a Dual Compensation Chamber Loop Heat Pipe
,”
Sci. China Ser. E: Technol. Sci.
,
52
(
8
), pp.
2316
2322
.
38.
Bai
,
L.
,
Lin
,
G.
,
Wen
,
D.
, and
Feng
,
J.
,
2009
, “
Experimental Investigation of Startup Behaviors of a Dual Compensation Chamber Loop Heat Pipe With Insufficient Fluid Inventory
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1447
1456
.
You do not currently have access to this content.