Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study evaluates the drying behavior, kinetics, morphology, efficiency, and heat and mass transfer phenomena of three differently shaped samples. A refined model was used to validate experimental results. The maximum recorded solar irradiance and ambient air temperature were 775 W/m2 and 40.5 °C, respectively, at 02:00 p.m. At this peak time, crop surface temperatures were 55.2 °C, 63.2 °C, and 70.1 °C for samples I–III, respectively, due to higher solar irradiance. The maximum drying rate for sample I was 0.017 g/g db.h at 11:00 a.m., gradually decreasing thereafter. For samples II and III, peak drying rates were 0.012 and 0.017 g/g db.h at 11:00 a.m., respectively. The highest drying efficiency of 26% was achieved in case I, with 24.5% and 22.5% observed in cases II and III. Prakash and Kumar's model, with root mean square errors of 0.0219, 0.01487, and 0.01831, effectively described the thin-layer drying kinetics. The developed drying system demonstrates superior cost-effectiveness, featuring low operating costs and a payback period of 1.25 years, outperforming other market options. Scanning electron microscopy (SEM) analysis has also been done to examine the surface morphology of the solar-dried food samples and showed brittle walls due to moisture loss, as indicated by SEM testing.

References

1.
Eltawil
,
M. A.
,
Azam
,
M. M.
, and
Alghannam
,
A. O.
,
2018
, “
Solar PV Powered Mixed-Mode Tunnel Dryer for Drying Potato Chips
,”
Renewable Energy
,
116
(
Part A
), pp.
594
605
.
2.
Al Faik
,
M. A.
,
Roy
,
M.
,
Azam
,
M. S.
,
Ahmmed
,
R.
,
Hoque
,
M. M.
, and
Alam
,
M. M.
,
2024
, “
Comprehensive Study on Potato Drying in Convective Air Dryer: Experimental Observations, Mathematical Modeling, and Model Validation
,”
Meas. Food
,
14
(
May
), p.
100170
.
3.
Masud
,
M. H.
,
Himel
,
H. H.
,
Arefin
,
A. M. E.
,
Ananno
,
A. A.
,
Rashid
,
M.
, and
Dabnichki
,
P.
,
2021
, “
Mathematical Modelling and Exergo-Environmental Analysis of Drying Potato Samples in a Waste Heat-Based Convective Dryer
,”
Environ. Challenges
,
5
(
Aug.
), pp.
2
11
.
4.
Vijayan
,
S.
,
Arjunan
,
T. V.
, and
Kumar
,
A.
,
2020
, “
Exergo-Environmental Analysis of an Indirect Forced Convection Solar Dryer for Drying Bitter Gourd Slices
,”
Renewable Energy
,
146
, pp.
2210
2223
. .
Not Available
.
5.
Prakash
,
O.
, and
Kumar
,
A.
,
2017
,
Solar Drying Systems
, 1st edition (22 December 2021) ed.,
CRC Press, Taylor & Francis
,
Boca Raton, FL
.
6.
Nadew
,
T. T.
,
Reshad
,
A. S.
, and
Tedla
,
T. S.
,
2024
, “
Oyster Mushroom Drying in Tray Dryer: Parameter Optimization Using Response Surface Methodology, Drying Kinetics, and Characterization
,”
Heliyon
,
10
(
2
), p.
e24623
.
7.
Sengar
,
M.
,
Singhania
,
R. R.
,
Singh
,
D.
,
Mishra
,
P. K.
,
Singh
,
D.
,
Kumar
,
M.
, and
Giri
,
B. S.
,
2023
, “
Drying Kinetics, Thermal and Morphological Analysis of Starchy Food Material: Experimental Investigation Through an Induced Type Solar Dryer
,”
Environ. Technol. Innov.
,
31
, p.
103221
.
8.
Lamrani
,
B.
,
Elmrabet
,
Y.
,
Mathew
,
I.
,
Bekkioui
,
N.
,
Etim
,
P.
,
Chahboun
,
A.
,
Draoui
,
A.
, and
Ndukwu
,
M. C.
,
2022
, “
Energy, Economic Analysis and Mathematical Modelling of Mixed-Mode Solar Drying of Potato Slices With Thermal Storage Loaded V-Groove Collector: Application to Maghreb Region
,”
Renewable Energy
,
200
, pp.
48
58
.
9.
Djebli
,
A.
,
Hanini
,
S.
,
Badaoui
,
O.
,
Haddad
,
B.
, and
Benhamou
,
A.
,
2020
, “
Modeling and Comparative Analysis of Solar Drying Behavior of Potatoes
,”
Renewable Energy
,
145
, pp.
1494
1506
.
10.
Brahma
,
B.
,
Shukla
,
A. K.
, and
Baruah
,
D. C.
,
2024
, “
Energy, Exergy, Economic and Environmental Analysis of Phase Change Material Based Solar Dryer (PCMSD)
,”
J. Energy Storage
,
88
, p.
111490
.
11.
Gilago
,
M. C.
,
Mugi
,
V. R.
, and
Chandramohan
,
V. P.
,
2023
, “
Evaluating the Environ-Economic and Exergy-Energy Impacts of Drying Carrots in Passive and Active Mode Solar Dryers
,”
Therm. Sci. Eng. Prog.
,
43
(
Apr.
), p.
101956
.
12.
Teguia
,
M.
,
Chabane
,
F.
,
Arif
,
A.
, and
Aouissi
,
Z.
,
2024
, “
Drying of the Orange Slices, and Energetic Analysis of the Drying Chamber Alimented by a Solar Air Collector for Extraction of the Water From an Orange Slice
,”
Sci. Afr.
,
24
(
Feb.
), p.
e02149
.
13.
Ndukwu
,
M. C.
,
Ibeh
,
M. I.
,
Ugwu
,
E.
,
Ekop
,
I.
,
Etim
,
P.
,
Igbojionu
,
D.
,
Abam
,
F.
,
Simo-tagne
,
M.
, and
Bennamoun
,
L.
,
2022
, “
Environmental Effects Environmental Sustainability and Exergy Return on Investment of Selected Solar Dryer Designs Based on Standard and Extended Exergy Approaches
,”
Energy Sources, Part A
,
44
(
4
), pp.
10647
10664
.
14.
Mathew
,
A. A.
, and
Thangavel
,
V.
,
2021
, “
A Novel Thermal Energy Storage Integrated Evacuated Tube Heat Pipe Solar Dryer for Agricultural Products: Performance and Economic Evaluation
,”
Renewable Energy
,
179
, pp.
1674
1693
.
15.
Mellalou
,
A.
,
Riad
,
W.
,
Bacaoui
,
A.
, and
Outzourhit
,
A.
,
2023
, “
Impact of the Greenhouse Drying Modes of Two-Phase Olive Pomace on the Energy, Exergy, Economic and Environmental (4E) Performance Indicators
,”
Renewable Energy
,
210
, pp.
229
250
.
16.
Jahromi
,
M. S. B.
,
Iranmanesh
,
M.
, and
Akhijahani
,
H. S.
,
2022
, “
Thermo-Economic Analysis of Solar Drying of Jerusalem Artichoke (Helianthus Tuberosus L.) Integrated With Evacuated Tube Solar Collector and Phase Change Material
,”
J. Energy Storage
,
52
(
Part A
), p.
104688
.
17.
Sharma
,
M.
,
Atheaya
,
D.
, and
Kumar
,
A.
,
2023
, “
Performance Evaluation of Indirect Type Domestic Hybrid Solar Dryer for Tomato Drying: Thermal, Embodied, Economical and Quality Analysis
,”
Therm. Sci. Eng. Prog.
,
42
, p.
101882
.
18.
Kushwah
,
A.
,
Kumar
,
A.
,
Kumar
,
M.
, and
Pal
,
A.
,
2022
, “
Performance Analysis of Heat Exchanger- Evacuated Tube Assisted Drying System (HE-ETADS) Under Unload Condition
,”
Sustain. Energy Technol. Assess.
,
53
(
Part B
), p.
102589
.
19.
Kushwah
,
A.
,
Kumar
,
A.
,
Kumar Gaur
,
M.
, and
Shrivastava
,
P.
,
2023
, “
Environmental Sustainability and Exergetic Based Sustainability Indicators for Heat Exchanger-Evacuated Tube Assisted Drying System (HE-ETADS)
,”
Sustain. Energy Technol. Assess.
,
57
, p.
103277
.
20.
Kushwah
,
A.
,
Gaur
,
M. K.
,
Kumar
,
A.
, and
Singh
,
P.
,
2022
, “
Application of ANN and Prediction of Drying Behavior of Mushroom Drying in Side Hybrid Greenhouse Solar Dryer: An Experimental Validation
,”
J. Therm. Eng.
,
8
(
2
), pp.
221
234
.
21.
Prakash
,
O.
, and
Kumar
,
A.
,
2014
, “
Performance Evaluation of Greenhouse Dryer With Opaque North Wall
,”
Heat Mass Transfer
,
50
(
4
), pp.
493
500
.
22.
Kushwah
,
A.
,
Kumar
,
A.
,
Kumar
,
M.
, and
Pal
,
A.
,
2021
, “
Garlic Dehydration Inside Heat Exchanger-Evacuated Tube Assisted Drying System: Thermal Performance, Drying Kinetic and Color Index
,”
J. Stored Prod. Res.
,
93
(
May
), p.
101852
.
23.
Prakash
,
O.
, and
Kumar
,
A.
,
2020
,
Solar Drying Systems
,
CRC Press, Taylor & Francis
,
Boca Raton, FL
.
24.
Kant
,
R.
,
Kushwah
,
A.
,
Kumar
,
A.
, and
Kumar
,
M.
,
2023
, “
Solar Drying of Peppermint Leave: Thermal Characteristics, Drying Kinetics, and Quality Assessment
,”
J. Stored Prod. Res.
,
100
, p.
102068
.
25.
Singh
,
P.
,
Gaur
,
M. K.
,
Kushwah
,
A.
, and
Tiwari
,
G. N.
,
2019
, “
Progress in Hybrid Greenhouse Solar Dryer (HGSD): A Review
,”
Adv. Energy Res.
,
6
(
2
), pp.
145
160
.
26.
Gaur
,
M. K.
, and
Thakur
,
V. K.
,
2022
, “
Experimental Analysis of Sustainability of Passive Solar Still With Nanoparticles Operating at Various Angles of Glass Cover
,”
Energy Sources, Part A
,
44
(
2
), pp.
5227
5245
.
27.
Thakur
,
V. K.
,
Gaur
,
M. K.
,
Dhamneya
,
A. K.
, and
Chaurasiya
,
P. K.
,
2021
, “
Validation of Thermal Models to Predict the Productivity and Heat Transfer Coefficients for Passive Solar Still With Different Nanoparticles
,”
Energy Sources, Part A
, pp.
1
21
.
You do not currently have access to this content.