In Part 1 of this paper, a new analysis procedure is presented which solves for the flow variables of an annular pressure seal in which the rotor has a large static displacement (eccentricity) from the centered position. This part of the paper (Part 2) incorporates the solutions from Part 1 to investigate the effect of eccentricity on the rotordynamic coefficients. The analysis begins with a set of governing equations based on a turbulent bulk-flow model and Moody’s friction factor equation. Perturbations of the flow variables yields a set of zeroth- and first-order equations. After integration of the zeroth-order equations by means of the method described in Part 1, the resulting zeroth-order flow variables are used as input in the solution of the first-order equations. Further integration of the first order pressures yields the eccentric rotordynamic coefficients. The results from this procedure compare very well with available experimental data, and are clearly more accurate than the predictions based on a Finite Element model.

This content is only available via PDF.
You do not currently have access to this content.