We investigate the influence of crown on slider dynamics during the takeoff stages of disk drives using the multi-channel laser interferometer. We show that a two-dimensional analysis of slider dynamics during takeoff/landing cannot explain all the observed phenomena. We also examine the crown effect on slider motion while it is flying on a thin film disk with a crater-like surface defect. Finally, we measure the spacing variation of the slider as a function of disk speed. It is observed that the initial motion of negative crown sliders during takeoff can be quite similar to positive crown sliders, although the process is quite different. Furthermore, the results suggest that the negative crown sliders may lead to more disk wear due to longer sliding distances. We observed that during steady flying conditions the craterlike surface defect on the disk produced significantly larger motions for negative crown sliders than positive crown sliders. Lastly, we found that both the waveform and magnitude of the low frequency component of the spacing fluctuation is independent of the slider flying height.

This content is only available via PDF.
You do not currently have access to this content.