The “negative squeeze” lubrication problem is investigated by means of a mass-conservating finite element cavitation algorithm (described elsewhere) within the context of a dimensionless study of lubricant film behavior between rigid, parallel separating surfaces. Appropriate mesh geometries which capture spatial and temporal mixture density history and satisfy JFO conditions on the cavitation interface are determined. Present simulation results agree qualitatively with previous experiments, supporting the validity of the algorithm and its utility in the bearing design process.

1.
Booker, J. F., 1990, “Classic Cavitation Models for Finite Element Analysis,” Current Research in Cavitating Fluid Films, D. E. Brewe, J. H. Ball, and M. M. Khonsari, eds. STLE Special Publication SP-28, pp. 39–40, 57–58.
2.
Booker
 
J. F.
, and
Huebner
 
K. H.
,
1972
, “
Application of Finite Element Methods to Lubrication: An Engineering Approach
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
94
, p.
313
313
.
3.
Brewe
 
D. E.
1986
, “
Theoretical Modeling of Vapor Cavitation in Dynamically Loaded Journal Bearings
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
108
, pp.
628
638
.
4.
Desai, C. S., and Abel, J. F., 1972, Introduction to the Finite Element Method, Van Nostrand Reinhold Company, New York, N.Y., 1972, pp. 164–165.
5.
Elrod, H. G., and Adams, M. L., 1975, “A Computer Program for Cavitation and Starvation Problems,” Cavitation and Related Phenomena in Lubrication, Proc. 1st Leeds-Lyon Symposium on Tribology, Leeds, England, Sept. 1974, D. Dowson, M. Godet, and C. M. Taylor, eds., Mechanical Engineering Publications Ltd., London, England, 1975, pp. 37–41.
6.
Hays, D. F., and Feiten, J. B., 1964, “Cavities Between Moving Parallel Plates,” Cavitation in Real Liquids, R. Davies, ed., Elsevier Publishing Company, New York, N.Y., 1964, pp. 122–137.
7.
Jones, G. J., 1983, “Crankshaft Bearings: Oil Film History,” Tribology of Reciprocating Engines, Proc. 9th Leeds-Lyon Symposium on Tribology, Leeds, England, Sept. 1982, D. Dowson, C. M. Taylor, M. Godet, and D. Berthe, eds., Butterworths, London, England, 1983, pp. 83–88.
8.
Kumar
 
A.
, and
Booker
 
J. F.
,
1991
a, “
A Finite Element Cavitation Algorithm
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
113
, pp.
276
286
.
9.
Kumar, A., and Booker, J. F., 1991b, “A Finite Element Cavitation Algorithm: Application/Validation,” ASME JOURNAL OF TRIBOLOGY, Vol. 113.
10.
LaBouff
 
G. A.
and
Booker
 
J. F.
,
1985
, “
Dynamically Loaded Journal Bearings: A Finite Element Treatment for Rigid and Elastic Surfaces
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
107
, pp.
505
515
.
11.
Oh
 
K. P.
, and
Goenka
 
P. K.
,
1985
, “
The Elastohydrodynamic Solution of Journal Bearings under Dynamic Loading
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
107
, pp.
389
395
.
12.
Olsson, K., 1965, “Cavitation in Dynamically Loaded Bearings,” Trans. Chalmers Univ. Tech., No. 308, 1965, Goteborg, Sweden.
13.
Paranjpe
 
R. S.
, and
Goenka
 
P. K.
,
1990
, “
Analysis of Crankshaft Bearings Using a Mass Conserving Algorithm
,”
STLE Tribology Transactions
, Vol.
33
, pp.
333
344
.
14.
Parkins
 
D. W.
, and
Stanley
 
W. T.
,
1982
, “
Characteristics of an Oil Squeeze Film
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
104
, pp.
497
503
.
15.
Parkins
 
D. W.
, and
May-Miller
 
R.
,
1984
, “
Cavitation in an Oscillatory Oil Squeeze Film
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
104
, pp.
497
503
.
16.
Parkins
 
D. W.
, and
Woollam
 
J. H.
,
1986
, “
Behavior of an Oscillating Oil Squeeze Film
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
106
, p.
360
360
.
17.
Rodrigues, A. N., 1970, “An Analysis of Cavitation in a Circular Squeeze Film and Correlation with Experimental Results,” Ph.D. thesis, Cornell University, Ithaca, NY.
18.
Vijayaraghavan
 
D.
, and
Keith
 
T. G.
, 1990, “
An Efficient, Robust, and Time Accurate Numerical Scheme Applied to a Cavitation Algorithm
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
112
, pp.
44
51
.
This content is only available via PDF.
You do not currently have access to this content.