A realistic description of rough surfaces will generally involve very large arrays of surface height data, which makes the application of conventional numerical methods of contact mechanics to rough contact analyses impractical. Recently, two fast numerical techniques have been applied to rough contact problems: the multi-level multi-summation (MLMS) and the fast Fourier transform (FFT). In this work, the computational efficiency of the two methods is compared by applying them to an example concentrated contact problem. It is shown that to achieve a numerical accuracy comparable to that of MLMS, the grid on which FFT is performed needs to be extended far beyond the contact area, which results in a dramatic increase in the computation time. When such a high accuracy is unnecessary. FFT can be applied on a smaller grid. However, the computational speed of MLMS can also be increased in this case by modifying certain algorithm parameters. Numerical results demonstrate that MLMS is more advantageous than FFT for solving three-dimensional concentrated contact problems, both when the maximum possible accuracy is desired and when a moderate accuracy goal is specified. [S0742-4787(00)00601-9]

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
2.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London, Ser. A
,
316
, pp.
97
121
.
3.
Nayak
,
R.
,
1973
, “
Random Process Model of Rough Surfaces in Plastic Contact
,”
Wear
,
26
, pp.
305
333
.
4.
Greenwood
,
J. A.
,
1967
, “
The Area of Contact Between Rough Surfaces and Flats
,”
ASME J. Lubr. Technol.
,
89
, pp.
81
91
.
5.
Williamson
,
J. B. P.
, and
Hunt
,
R. T.
,
1972
, “
Asperity Persistence and the Real Area of Contact Between Rough Surfaces
,”
Proc. R. Soc. London, Ser. A
,
327
, pp.
147
157
.
6.
Pullen
,
J.
, and
Williamson
,
J. B. P.
,
1972
, “
On the Plastic Contact of Rough Surfaces
,”
Proc. R. Soc. London, Ser. A
,
327
, pp.
159
173
.
7.
Berthe
,
D.
, and
Vergne
,
Ph.
,
1987
, “
An Elastic Approach to Rough Contact With Asperity Interactions
,”
Wear
,
117
, pp.
211
222
.
8.
Goryacheva
,
I. G.
, and
Dobychin
,
M. N.
,
1991
, “
Multiple Contact Model in the Problems of Tribomechanics
,”
Tribol. Int.
,
24
, pp.
29
35
.
9.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1978
, “
Surface Topography as a Nonstationary Random Process
,”
Nature (London)
,
271
, pp.
431
434
.
10.
Greenwood, J. A., 1992, “Problems With Surface Roughness,” I. L. Singer, H. M. Pollock, eds., Fundamentals of Friction: Macroscopic and Microscopic Processes, Kluwer, Dordrecht, pp. 57–76.
11.
O’Callaghan
,
P. W.
, and
Probert
,
S. D.
,
1970
, “
Real Area of Contact Between a Rough Surface and a Softer Optically Flat Surface
,”
J. Mech. Eng. Sci.
,
12
, pp.
259
267
.
12.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
, pp.
1
11
.
13.
Bhushan
,
B.
, and
Majumdar
,
A.
,
1992
, “
Elastic-Plastic Contact Model for Bifractal Surfaces
,”
Wear
,
153
, pp.
53
64
.
14.
Hendriks
,
C. P.
, and
Visscher
,
M.
,
1995
, “
Accurate Real Area of Contact Measurements on Polyurethane
,”
ASME J. Tribol.
,
117
, pp.
607
611
.
15.
Polonsky
,
I. A.
,
Chang
,
T. P.
,
Keer
,
L. M.
, and
Sproul
,
W. D.
,
1997
, “
An Analysis of the Effect of Hard Coatings on Near-Surface Rolling Contact Fatigue Initiation Induced by Surface Roughness
,”
Wear
,
208
, pp.
204
219
.
16.
Sutcliffe, M. P. F., 1999, “Flattening of Random Rough Surfaces in Metal Forming Process,” ASME JOURNAL OF TRIBOLOGY, in press.
17.
Lai
,
W. T.
, and
Cheng
,
H. S.
,
1985
, “
Computer Simulation of Elastic Rough Contacts
,”
ASLE Trans.
,
28
, pp.
172
180
.
18.
Webster
,
M. N.
, and
Sayles
,
R. S.
,
1986
, “
A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces
,”
ASME J. Tribol.
,
108
, pp.
314
320
.
19.
Seabra
,
J.
, and
Berthe
,
D.
,
1987
, “
Influence of Surface Waviness and Roughness on the Normal Pressure Distribution in the Hertzian Contact
,”
ASME J. Tribol.
,
109
, pp.
462
470
.
20.
Ren
,
N.
, and
Lee
,
S. C.
,
1993
, “
Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method
,”
ASME J. Tribol.
,
115
, pp.
597
601
.
21.
Kalker
,
J. J.
, and
van Randen
,
Y. A.
,
1972
, “
A Minimum Principle for Frictionless Elastic Contact with Application to Non Hertzian Problems
,”
J. Eng. Math.
,
6
, pp.
193
206
.
22.
Kubo
,
A.
,
Okamoto
,
T.
, and
Kurokawa
,
N.
,
1981
, “
Contact Stress Between Rollers with Surface Irregularity
,”
ASME J. Mech. Des.
,
103
, pp.
492
498
.
23.
Francis
,
H. A.
,
1983
, “
The Accuracy of Plane Strain Models for the Elastic Contact of Three-Dimensional Rough Surfaces
,”
Wear
,
85
, pp.
239
256
.
24.
Brandt
,
A.
, and
Lubrecht
,
A. A.
,
1990
, “
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
,”
J. Comput. Phys.
,
90
, pp.
348
370
.
25.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
1996
, “
Numerical Analysis of the Influence of Waviness on the Film Thickness of a Circular EHL Contact
,”
ASME J. Tribol.
,
118
, pp.
153
161
.
26.
Lubrecht
,
A. A.
, and
Ioannides
,
E.
,
1991
, “
A Fast Solution of the Dry Contact Problem and the Associated Subsurface Stress Field, Using Multilevel Techniques
,”
ASME J. Tribol.
,
113
, pp.
128
133
.
27.
Polonsky, I. A., and Keer, L. M., 1999, “A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques,” Wear, accepted for publication.
28.
Hestenes, M. R., 1980, Conjugate Direction Methods in Optimization, Springer-Verlag, New York, Chaps. 2, 3.
29.
Nogi
,
T.
, and
Kato
,
T.
,
1997
, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact-Part I: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
,
119
, pp.
493
500
.
30.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge.
31.
Kalker
,
J. J.
,
1986
, “
Numerical Calculation of the Elastic Field in a Half-Space
,”
Commun. Appl. Numer. Meth.
,
2
, pp.
401
410
.
32.
Venner, C. H., 1991, Multilevel Solution of the EHL Line and Point Contact Problems, Ph.D. thesis, University of Twente, Enschede, The Netherlands.
33.
Cooley
,
J. W.
, and
Tukey
,
J. W.
,
1965
, “
An Algorithm for the Machine Calculation of Complex Fourier Series
,”
Math. Comput.
,
19
, pp.
297
301
.
34.
Stoer, J., and Bulirsch, R., 1980, Introduction to Numerical Analysis, Springer-Verlag, New York.
35.
Sackfield
,
A.
, and
Hills
,
D.
,
1983
, “
A Note on the Hertz Contact Problem: A Correlation of Standard Formulae
,”
J. Strain Anal.
,
18
, pp.
195
197
.
You do not currently have access to this content.