This paper develops a method which allows one to calculate the complete elastic field (stress field and displacements) of layered materials of transverse and complete isotropy under given load conditions. It is assumed that the layered body consists of an infinite half-space and various infinite planes which are all ideally bonded to each other. Thus, the interfaces are parallel to the surface of the resulting “coated half space.” The approach is based on the method of images in classical electrostatics. The final solution for an arbitrary load problem can be presented as a series of potential functions, where corresponding functions may be interpreted as “image loads” the analogous to “image charges.” The solution for the elastic field for any arbitrary stress distribution on the surface of the coated half space can be obtained in a relatively straightforward manner by using the method described here as long as the corresponding solution for the homogeneous half space is known. Further, if this solution of the homogeneous case may be expressed in terms of elementary functions, then the solution for the coated half space is elementary, too. Explicit formulas for the stress fields for some particular examples are given. [S0742-4787(00)01204-2]

1.
Fabrikant, V. I., 1989, Application of Potential Theory in Mechanics: A Selection of New Results, Kluwer Academic Publishers, The Netherlands.
2.
Hanson
,
M. T.
,
1994
, “
The Elastic Field for an Upright or Tilted Sliding Circular Punch on a Transversely Isotropic Half-Space
,”
Int. J. Solids Struct.
,
31
, No.
4
, pp.
567
586
.
3.
Hanson
,
M. T.
,
1992
, “
The Elastic Potentials for Coplanar Interaction Between an Infinitesimal Prismatic Dislocation Loop and a Circular Crack for Transverse Isotropy
,”
ASME J. Appl. Mech.
,
59
, pp.
72
78
.
4.
Hanson
,
M. T.
,
1992
, “
The Elastic Field for a Conical Indentation Including Sliding Friction for Transverse Isotropy
,”
ASME J. Appl. Mech.
,
59
, pp.
123
130
.
5.
Hanson
,
M. T.
,
1993
, “
The Elastic Field for a Conical Punch on an Isotropic Half Space
,”
ASME J. Appl. Mech.
60
, pp.
557
559
.
6.
Doerner
,
M. F.
, and
Nix
,
W. D.
,
1986
, “
Stresses and Deformation Process in Thin Films on Substrates
,”
J. Mater. Res.
,
1
, No.
4
, pp.
601
609
.
7.
Gupta, P. K., and Walowit, J. A., 1974, “Contact Stresses Between an Elastic Cylinder and a Layered Elastic Solid,” ASME J. Lubr. Technol., pp. 250–257.
8.
Kalker
,
J. J.
,
1991
, “
Viscoelastic Multilayered Cylinders Rolling With Dry Friction
,”
ASME J. Appl. Mech.
,
58
, pp.
666
679
.
9.
Stone
,
D. S.
,
1998
, Elastic Rebound Between an Indenter and a Layered Specimen,
J. Mater. Res.
,
13
, No.
11
, pp.
3207
3213
.
10.
Gao
,
H.
,
Chiu
,
Ch.-H.
, and
Lee
,
J.
,
1992
, “
Elastic Contact Versus Indentation Modelling of Multi-Layered Materials
,”
Int. J. Solids Struct.
,
29
, No.
20
, pp.
2471
2492
.
11.
Gao
,
H.
, and
Wu
,
T.-W.
,
1993
, “
A Note on the Elastic Contact Stiffness of a Layered Medium
,”
J. Mater. Res.
,
8
, No.
12
, pp.
3229
3232
.
12.
Popov
,
G. Ia.
,
1973
, “
Axisymmetric Contact Problem for an Elastic Inhomogeneous Half-Space in the Presence of Cohesion
,”
PMM
,
37
, pp.
1109
1116
.
13.
Rostovtsev
,
N. A.
,
1964
, “
On Certain Solutions of an Integral Equation of the Theory of a Linear Deformable Foundation
,”
PMM
,
28
, pp.
111
127
.
14.
Djabella
,
H.
, and
Arnell
,
R. D.
,
1993
, “
Two-Dimensional Finite-Element Analysis of Elastic Stresses in Double-Layer Systems Under Surface Normal and Tangential Loads
,”
Thin Solid Films
,
226
, pp.
65
73
.
15.
Djabella
,
H.
, and
Arnell
,
R. D.
,
1993
, “
Finite Element Comparative Study of Elastic Stresses in Single, Double Layer and Multilayer Coated Systems
,”
Thin Solid Films
,
235
, p.
156
156
.
16.
Laursen
,
T. A.
, and
Simo
,
J. C.
,
1992
, “
A Study of the Mechanics of Microindentation Using Finite Elements
,”
J. Mater. Res.
,
7
, No.
3
, pp.
618
626
.
17.
Care´
,
G.
, and
Fischer-Cripps
,
A. G.
,
1997
, “
Elastic-Plastic Indentation Stress Fields Using the Finite-Element Method
,”
J. Mater. Sci.
,
29
, pp.
5653
5659
.
18.
Fischer-Cripps
,
A. C.
,
Lawn
,
B. R.
,
Pajares
,
A.
, and
Wei
,
L.
,
1996
, “
Stress Analysis of Elastic-Plastic Contact Damage in Ceramics on Metal Substrates
,”
J. Am. Ceram. Soc.
,
79
, No.
10
, pp.
2619
2625
.
19.
Man, K. W., 1994, Contact Mechanics Using Boundary Elements, Computational Mechanics Publications, Southhampton, Hants.
20.
Gu¨nter, N. M., 1957, Die Potentialtheorie und ihre Anwendungen auf Grundaufgaben der Mathematischen Physik, B. G. Teubner Verlagsgeselschaft, Leipzig.
21.
Maxwell, J. C., 1892, A Treatise on Electricity and Magnetism, Vol. 1, Third edition, Oxford University Press, London, Geoffrey Cumberlege, pp. 119, 155–181, 189, 318.
22.
Maxwell, J. C., 1892, A Treatise on Electricity and Magnetism, Vol. 2, Third edition, Oxford University Press, London, Geoffrey Cumberlege, p. 662.
23.
Abraham, M., and Becker, R., 1932, The Classical Theory of Electricity and Magnetism, Blackie & Son Limited, London and Glasgow, 65ff.
24.
Planck, M., 1932, Theory of Electricity and Magnetism, Macmillan and Co., Limited, St. Martin’s Street, London, p. 57.
25.
Jeans, J., 1933, The Mathematical Theory of Electricity and Magnetism, Cambridge at the University Press, Fifth edition, pp. 185–201, 258, 281, 286.
26.
Harnwell, G. P., 1938, Principles of Electricity and Electromagnetism, McGraw-Hill Book Company, New York and London, pp. 34f, 66ff, 354.
27.
Smythe, W. R., 1939, Static and Dynamic Electricity, McGraw-Hill Book Company, New York and London.
28.
Suydam, V. A., 1940, Fundamentals of Electricity and Magnetism, D. van Nostrand Company, Inc., 250 Fourth Avenue, New York, pp. 60–63.
29.
Attwood, St. S., 1941, Electric and Magnetic Fields, 2nd edition, Chapman & Hall, Limited, London, 74, No. 76, pp. 133–156, 353–367.
30.
Pender, H., and Warren, S. R., 1943, Electric Circuits and Fields, McGraw-Hill Book Company, New York and London, p. 255f.
31.
Weber, E., 1950, Electromagnetic Fields, 1, John Wiley & Sons, New York.
32.
Rogers, W. E., 1954, Introduction to Electric Fields—A Vector Analysis Approach, McGraw-Hill Book Company, Inc., New York, Toronto and London, pp. 152–172.
33.
Ferraro, V. C. A., 1956, Electromagnetic Theory, The Athlone Press, London, pp. 160ff, 175ff, 204ff, 278, 422, 487f.
34.
Bleaney, B. I., and Bleaney, B., 1965, Electricity and Magnetism, Oxford at the Clarendon Press, United Kingdom, p. 48.
35.
Elliot
,
H. A.
,
1948
, “
Three-Dimensional Stress Distribution in Hexagonal Aelotropic Crystals
,”
Proc. Cambridge Philos. Soc.
,
44
, pp.
522
533
.
36.
Elliot
,
H. A.
,
1949
, “
Axial Symmetric Stress Distribution in Aelotropic Hexagonal Crystals. The Problem of the Plane and Related Problems
,”
Proc. Cambridge Philos. Soc.
,
45
, pp.
621
630
.
37.
Hanson
,
M. T.
, and
Wang
,
Y.
,
1997
,
Int. J. Solids Struct.
,
34
, No.
11
, pp.
1379
1418
.
38.
Fabrikant, V. I., 1991, Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering, Kluwer Academic Publishers, The Netherlands.
39.
Hanson
,
M. T.
,
1990
, “
A Dislocation Green’s Function for the Analysis of Multiple Coplanar Cracks or Cracks With Nonuniform Crack Fronts
,”
ASME J. Appl. Mech.
,
57
, pp.
589
595
.
40.
Schwarzer, N., 1999, “Arbitrary Load on a Transverse Isotropic Half Space With Two Layers,” published in the internet at: http/www.tu-chemnitz.de/∼nschwarz/two-layers.html.
41.
Chudoba, Th., and Schwarzer, N., 1999, ELASTICA, Software demonstration package, available in the internet at: http/www.tu-chemnitz.de/∼thc/.
42.
Fabrikant
,
V. I.
,
1990
, “
An Arbitrary Tangential Load Under a Smooth Punch
,”
ASME J. Appl. Mech.
,
57
, pp.
596
599
.
43.
Timoschenko, S., and Goodier, J. N., 1951, Theory of Elasticity, McGraw-Hill Book Company, New York, Toronto, London.
44.
Schwarzer
,
N.
,
Richter
,
F.
, and
Hecht
,
G.
,
1999
, “
Elastic Field in a Coated Half Space Under Hertzian Pressure Distribution
,”
Surf. Coat. Technol.
,
114
, pp.
292
304
.
1.
Hertz
,
H.
,
1881
, “
U¨ber die Beru¨hrung Fester Elastischer Ko¨rper
,”
J. Math (Crelle’s J.)
92
, pp.
156
171
;
2.
see also Hertz, H., 1895, “Gesammelte Werke,” 1, p. 155.
1.
Faulkner
,
A.
,
Tang
,
K. C.
,
Schwarzer
,
N.
,
Arnell
,
R. D.
, and
Richter
,
F.
,
1997
, “
Comparison Between an Elastic-Perfectly Plastic FE Model and Purely Elastic Analytical Model for a Spherical Indenter on a Layered Substrate
,”
Thin Solid Films
,
300
, p.
177
177
.
2.
Schwarzer
,
N.
,
Chudoba
,
T.
,
Billep
,
D.
, and
Richter
,
F.
,
1999
, “
Investigation of Coating Substrate Compounds Using Inclined Spherical Indentation
,”
J. Surf. Coatings Technol.
,
116–119
, pp.
244
252
.
3.
Chudoba, Th., Schwarzer, N., and Richter, F. 1999, “New Possibilities of Mechanical Surface Characterization with Spherical Indenters by Comparison of Experimental and Theoretical Results,” to be published in Thin Solid Films, accepted.
You do not currently have access to this content.