A new numerical model for the three-dimensional contact analysis of a layered elastic–perfectly plastic half space with another rough surface is presented. The model is based on a variational principle in which the real area of contact and contact pressure distribution are those which minimize the total complementary potential energy. A quasi-Newton method is used to find the minimum. The influence coefficients matrix is determined using the Papkovich–Neuber potentials with fast Fourier transformation. The model is extended to elastic–perfectly plastic contacts in dry and wet conditions. Contact analyses have been performed to predict contact statistics of layered elastic/plastic solids with rough surfaces using this model. The effects of the stiffness of the layer and the substrate, layer thickness, as well as normal load are studied. Optimum layer parameters are identified to provide low friction/stiction and wear.

1.
Bhushan
,
B.
,
1998
, “
Contact Mechanics of Rough Surfaces in Tribology: Multiple Asperity Contact
,”
Tribol. Lett.
,
4
, pp.
1
35
.
2.
Bhushan, B., 1999, Principles and Applications of Tribology, Wiley, New York.
3.
Bhushan
,
B.
,
1996
, “
Contact Mechanics of Rough Surfaces in Tribology: Single Asperity Contact
,”
Appl. Mech. Rev.
,
49
, pp.
275
298
.
4.
Plumet
,
S.
, and
Dubourg
,
M.-C.
,
1998
, “
A 3-D Model for a Multilayered Body Loaded Normally and Tangentially Against a Rigid Body: Application to Specific Coatings
,”
ASME J. Tribol.
,
120
, pp.
668
676
.
5.
Kral
,
E. R.
, and
Komvopoulos
,
K.
,
1997
, “
Three-Dimensional Finite Element Analysis of Subsurface Stress and Strain Fields Due to Sliding Contact on an Elastic-Plastic Layered Medium
,”
ASME J. Tribol.
,
119
, pp.
332
341
.
6.
Merriman
,
T.
, and
Kannel
,
J.
,
1989
, “
Analyses of the Role of Surface Roughness on Contact Stresses Between Elastic Cylinders with and without Soft Surface Coating
,”
ASME J. Tribol.
,
111
, pp.
87
94
.
7.
Cole
,
S. J.
, and
Sayles
,
R. S.
,
1991
, “
A Numerical Model for the Contact of Layered Elastic Bodies with Real Rough Surfaces
,”
ASME J. Tribol.
,
114
, pp.
334
340
.
8.
Mao
,
K.
,
Bell
,
T.
, and
Sun
,
Y.
,
1997
, “
Effect of Sliding Friction on Contact Stresses for Multilayered Elastic Bodies with Rough Surfaces
,”
ASME J. Tribol.
,
119
, pp.
476
480
.
9.
Nogi
,
T.
, and
Kato
,
T.
,
1997
, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact—Part I: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
,
119
, pp.
493
500
.
10.
Hestenes
,
M. R.
, and
Stiefel
,
E.
,
1952
, “
Methods of Conjugate Gradients for Solving Linear Systems
,”
J. Res. Nat. Bur. Stand.
,
49
, pp.
409
436
.
11.
Winther
,
R.
,
1980
, “
Some Superlinear Convergence Results for the Conjugate Gradient Method
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
17
, pp.
14
17
.
12.
Tian
,
X.
, and
Bhushan
,
B.
,
1996
, “
A Numerical Three-dimensional Model for the Contact of Rough Surfaces by Variational Principle
,”
ASME J. Tribol.
,
118
, pp.
33
41
.
13.
Tian
,
X.
, and
Bhushan
,
B.
,
1996
, “
The Micro-Meniscus Effect of a Thin Liquid Film on the Static Friction of Rough Surface Contact
,”
J. Phys. D: Appl. Phys.
,
29
, pp.
163
178
.
14.
Hu
,
Y. Z.
, and
Tonder
,
K.
,
1992
, “
Simulation of 3-D Random Surface by 2-D Digital Filter and Fourier Analysis
,”
Int. J. Mach. Tools Manuf.
,
32
, pp.
82
90
.
15.
Chilamakuri
,
S. K.
, and
Bhushan
,
B.
,
1998
, “
Contact Analysis of non-Gaussian random surfaces
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
212
, pp.
19
32
.
16.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
17.
Richards, T. H., 1977, Energy Methods in Stress Analysis: With an Introduction to Finite Element Techniques, Halsted Press, New York.
18.
Kalker
,
J. J.
, and
van Randen
,
Y.
,
1972
, “
A Minimum Principle for Frictionless Elastic Contact with Application to Non-Hertzian Half-Space Contact Problems
,”
J. Eng. Math.
,
6
, pp.
193
206
.
19.
Love
,
A. E. H.
,
1929
, “
The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary
,”
Proc. R. Soc. London, Ser. A
,
228
, pp.
377
420
.
20.
O’Sullivan
,
T. C.
, and
King
,
R. B.
,
1988
, “
Sliding Contact Stress Field Due to a Spherical Indenter on a Layered Elastic Half-Space
,”
ASME J. Tribol.
,
110
, pp.
235
240
.
21.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1999, Numerical Recipes in FORTRAN, the Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, UK.
22.
Ju
,
Y.
, and
Farris
,
T. N.
,
1996
, “
Special Analysis of Two-dimensional Contact Problems
,”
ASME J. Tribol.
,
118
, pp.
320
328
.
23.
Stanley
,
H. M.
, and
Kato
,
T.
,
1997
, “
An FFT-Based Method for Rough Surface Contact
,”
ASME J. Tribol.
,
119
, pp.
481
485
.
24.
Ai
,
X.
, and
Sawamiphakdi
,
K.
,
1999
, “
Solving Elastic Contact Between Rough Surfaces as an Unconstrained Strain Energy Minimization by Using CGM and FFT Techniques
,”
ASME J. Tribol.
,
121
, pp.
639
647
.
25.
Bhattacharya
,
A. K.
, and
Nix
,
W. D.
,
1988
, “
Analysis of Elastic and Plastic Deformation Associated with Indentation Testing of Thin Films on Substrates
,”
Int. J. Solids Struct.
,
24
, pp.
1287
1298
.
26.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
, pp.
1564
1583
.
27.
Gao
,
C.
,
Tian
,
X.
, and
Bhushan
,
B.
,
1995
, “
A Meniscus Model for Optimization of Texturing and Liquid Lubrication of Magnetic Thin-Film Rigid Disks
,”
Tribol. Trans.
,
38
, pp.
201
212
.
28.
Stewart, J., 1995, Calculus, 3rd ed., Brooks/Cole, Pacific Grove, CA.
You do not currently have access to this content.