A method for solving the two-dimensional (2-D) isothermal rough surface contact problem of general anisotropic materials with friction is presented. By using Stroh’s formalism, the surface displacements of an elastic half-space due to uniform distributions of traction over a strip are derived from the surface Green’s function. The surface displacement and subsurface stresses of the anisotropic half-space due to the distributed contact pressure may then be calculated by superposition. The real contact area and the contact pressure are determined via an iteration scheme using the conjugate gradient method.

1.
Liu
,
G.
,
Wang
,
Q.
, and
Lin
,
C.
,
1999
, “
A Survey of Current Models for Simulating the Contact Between Rough Surfaces
,”
Tribol. Trans.
,
42
, pp.
581
591
.
2.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
1999
, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
,
231
, pp.
206
219
.
3.
Liu
,
G.
,
Wang
,
Q.
, and
Liu
,
S.
,
2001
, “
A Three-Dimensional Thermal-Mechanical Asperity Contact Model for Two Nominally Flat Surfaces in Contact
,”
ASME J. Tribol.
,
123
, pp.
595
602
.
4.
Stroh
,
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
, pp.
625
646
.
5.
Stroh
,
A. N.
,
1962
, “
Steady-State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
,
41
, pp.
77
103
.
6.
Fan
,
H.
, and
Keer
,
L. M.
,
1994
, “
Two-Dimensional Contact on an Anisotropic Elastic Half-Space
,”
ASME J. Appl. Mech.
,
61
, pp.
250
255
.
7.
Fan
,
C. W.
, and
Hwu
,
C.
,
1996
, “
Punch Problems for an Anisotropic Elastic Half-plane
,”
ASME J. Appl. Mech.
,
63
, pp.
69
76
.
8.
Hwu
,
C.
, and
Fan
,
C. W.
,
1998
, “
Sliding Punches With or Without Friction Along The Surface of An Anisotropic Elastic Half-Plane
,”
Q. J. Mech. Appl. Math.
,
51
, pp.
159
177
.
9.
Hwu
,
C.
, and
Fan
,
C. W.
,
1998
, “
Contact Problems of Two Dissimilar Anisotropic Elastic Bodies
,”
ASME J. Appl. Mech.
,
65
, pp.
580
587
.
10.
Daniel, I. M., and Ishai, O., 1994, Engineering Mechanics of Composite Materials, Oxford University Press, New York.
11.
Dongye
,
C.
, and
Ting
,
T. C. T.
,
1989
, “
Explicit Expressions of Barnett-Lothe Tensors and Their Associated Tensors for Orthotropic Materials
,”
Q. Appl. Math.
,
47
, pp.
723
734
.
12.
Hwu
,
C.
,
1993
, “
Fracture Parameters for the Orthotropic Bimaterial Interface Cracks
,”
Eng. Fract. Mech.
,
45
, pp.
89
97
.
13.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, U.K.
14.
Hamilton
,
G. M.
, and
Goodman
,
L. E.
,
1966
, “
The Stress Field Created by a Circular Sliding Contact
,”
ASME J. Appl. Mech.
,
33
, pp.
371
376
.
15.
Ting, T. C. T., 1996, Anisotropic Elasticity: Theory and Applications, Oxford Science Publication, New York.
16.
Barnett
,
D. M.
, and
Lothe
,
J.
,
1973
, “
Synthesis of the Sextic and the Integral Formalism for Dislocations, Green’s Function and Surface Waves in Anisotropic Elastic Solids
,”
Phys. Norv.
,
7
, pp.
13
19
.
You do not currently have access to this content.