This paper presents a numerical study comparing the performance of air bearing slider form-factors. The air bearing slider and air bearing surface (ABS) design has gone through drastic changes in recent years in order to achieve the performance required by lower flying heights. In the past, improvements have been seen by scaling down the form-factors of air bearing sliders. The pico form-factor has been successfully used for several generations of products and the question arises—should the form-factor be scaled down further? The dynamic characteristics and flying-height modulation (FHM) performance of two different ABS designs in the pico and femto form-factors were numerically investigated. It was found that for the smaller form-factor designs, greater damping of the air bearing film and slider body system was achieved but with an undesirable decrease in modal frequencies. However, depending on the ABS design, beneficial dynamic properties can be achieved by scaling down the form-factor from pico to femto. Maximizing the total air bearing force (the sum of negative and positive) with a design featuring a large number of transverse pressure gradients can obtain high stiffness and damping. Geometric FHM was also investigated using both sinusoidal disk waviness and an actual measured disk topography. It was found that the FHM depends not only on the form-factor, but also on the ABS design. For long disk waviness wavelengths (longer than the slider body length, L), the FHM is proportional to where β was found to be between 2.6 and 4; hence, FHM is dependent on form-factor. For short disk waviness wavelengths, the FHM is a function of the ABS design and flying attitude and not form-factor. A disk waviness wavelength of 3 mm demarks the transition above which the FHM is a function of form-factor and below which the FHM is a function of the ABS design and the superposition of these two effects compose the geometric FHM. Simulations with an actual measured disk topography showed that the femto form-factor exhibited 22–32 percent less FHM than the pico form-factor for a similar design. However, by changing the ABS design, 35–40 percent less FHM was achieved within the same form-factor. By scaling down a pico slider to a femto slider, we do not necessarily achieve enhanced overall performance. Significant performance improvements in the pico form-factor can be attained if the ABS is properly designed. However, in designing a dynamically stable and low FHM air bearing slider a femto slider ultimately yields better performance when care is taken in designing the ABS.
Skip Nav Destination
Article navigation
July 2004
Technical Papers
A Numerical Study of Air-Bearing Slider Form-Factors
Brian H. Thornton,
Brian H. Thornton
Computer Mechanics Laboratory, 5129 Etcheverry Hall, Department of Mechanical Engineering, University of California, Berkeley, CA 94720
Search for other works by this author on:
David B. Bogy
David B. Bogy
Computer Mechanics Laboratory, 5129 Etcheverry Hall, Department of Mechanical Engineering, University of California, Berkeley, CA 94720
Search for other works by this author on:
Brian H. Thornton
Computer Mechanics Laboratory, 5129 Etcheverry Hall, Department of Mechanical Engineering, University of California, Berkeley, CA 94720
David B. Bogy
Computer Mechanics Laboratory, 5129 Etcheverry Hall, Department of Mechanical Engineering, University of California, Berkeley, CA 94720
Contributed by the Tribology Division for publication in the ASME JOURNAL OF TRIBOLOGY. Manuscript received by the Tribology Division October 16, 2002; revised manuscript received July 11, 2003. Associate Editor: C.-P. R. Ku.
J. Tribol. Jul 2004, 126(3): 553-558 (6 pages)
Published Online: June 28, 2004
Article history
Received:
October 16, 2002
Revised:
July 11, 2003
Online:
June 28, 2004
Citation
Thornton , B. H., and Bogy, D. B. (June 28, 2004). "A Numerical Study of Air-Bearing Slider Form-Factors ." ASME. J. Tribol. July 2004; 126(3): 553–558. https://doi.org/10.1115/1.1691435
Download citation file:
Get Email Alerts
Cited By
Related Articles
Time-Frequency Analysis of Slider Dynamics and the Effect of Lubricant
J. Tribol (July,2004)
Flying Height Modulation Due to Disk Waviness of Sub-5 nm Flying Height Air Bearing Sliders
J. Tribol (October,2002)
Air Film Dynamics for Micro-Textured Flying Head Slider Bearings in Magnetic Hard Disk Drives
J. Tribol (July,2002)
Design and Evaluation of Damped Air Bearings at Head-Disk Interface
J. Tribol (July,2010)
Related Proceedings Papers
Related Chapters
Numerical Simulation of the Air Bearing Film in the Head-Disk Interface of Hard Disk Drives by Using Meshless Locall Petrov-Galerkin Method
International Conference on Mechanical and Electrical Technology 2009 (ICMET 2009)
Characterization and Modeling of Viscoelastic Layer Damping Plate Based on Substructures
International Conference on Information Technology and Management Engineering (ITME 2011)
Summary and Conclusions
Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications