This study compares the flattening and indentation approaches for modeling single asperity contacts in order to reveal quantitatively their different behaviors in terms of the constitutive relationships for the contact parameters and deformation regimes. The comparison is performed with four empirical models recently developed for flattening and indentation based on the finite element method. In the elasto-plastic regime, the classic Hertz solution does not hold and, therefore, different mechanical behavior was obtained for flattening and indentation cases. Consequently, the contact condition and relative strength of mating surfaces should be considered when choosing between indentation or flattening models.
Issue Section:
Technical Briefs
1.
Polycarpou
, A. A.
, and Etsion
, I.
, 2000, “A Model for the Static Sealing Performance of Compliant Metallic Gas Seals Including Surface Roughness and Rarefaction Effects
,” Tribol. Trans.
1040-2004, 43
, pp. 237
–244
.2.
Jiang
, X.
, Cheng
, H. S.
, and Hua
, D. Y.
, 2000, “Theoretical Analysis of Mixed Lubrication by Macro Micro Approach: Part I—Results in a Gear Surface Contact
,” Tribol. Trans.
1040-2004, 43
, pp. 689
–699
.3.
Kweh
, C. C.
, Patching
, M. J.
, Evans
, H. P.
, and Snidle
, R. W.
, 1992, “Simulation of Elastohydrodynamic Contacts Between Rough Surfaces
,” Trans. ASME, J. Tribol.
0742-4787, 114
, pp. 412
–419
.4.
Tichy
, J. A.
, and Meyer
, D. M.
, 2000, “Review of Solid Mechanics in Tribology
,” Int. J. Solids Struct.
0020-7683, 37
, pp. 391
–400
.5.
Wang
, Y.
, Zhang
, C.
, Wang
, Q. J.
, and Lin
, C.
, 2002, “A Mixed-TEHD Analysis and Experiment of Journal Bearings Under Severe Operating Conditions
,” Tribol. Int.
0301-679X, 35
, pp. 395
–407
.6.
Borodich
, F. M.
, and Keer
, L. M.
, 2004, “Contact Problems and Depth-Sensing Nanoindentation for Frictionless and Frictional Boundary Conditions
,” Int. J. Solids Struct.
0020-7683, 41
, pp. 2479
–2499
.7.
McCarthy
, B.
, Adams
, G. G.
, McGruer
, N. E.
, and Potter
, D. A.
, 2002, “Dynamic Model, Including Contact Bounce, of an Electrostatically Actuated Microswitch
,” J. Microelectromech. Syst.
1057-7157, 11
, pp. 276
–283
.8.
Chang
, W. R.
, Etsion
, I.
, and Bogy
, D. B.
, 1987, “An Elastic-Plastic Model for the Contact of Rough Surfaces
,” Trans. ASME, J. Tribol.
0742-4787, 109
, pp. 257
–263
.9.
Komvopoulos
, K.
, and Ye
, N.
, 2001, “Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,” Trans. ASME, J. Tribol.
0742-4787, 123
, pp. 632
–640
.10.
Johnson
, K. L.
, 1985, Contact Mechanics
, Cambridge University Press
, Cambridge.11.
Mesarovic
, S. D.
, and Fleck
, N. A.
, 2000, “Frictionless Indentation of Dissimilar Elastic-Plastic Spheres
,” Int. J. Solids Struct.
0020-7683, 37
, pp. 7071
–7091
.12.
Jackson
, R. L.
, and Green
, I.
, 2005, “A Finite Element Study of Elasto-Plastic Hemispherical Contact
,” Trans. ASME, J. Tribol.
0742-4787, 127
, pp. 343
–354
.13.
Kogut
, L.
, and Komvopoulos
, K.
, 2004, “Analysis of Spherical Indentation Cycle of Elastic-Perfectly Plastic Solids
,” J. Mater. Res.
0884-2914, 19
, pp. 3641
–3653
.14.
Chin
, M.
, Iyer
, K. A.
, and Hu
, S. J.
, 2004, “Prediction of Electrical Contact Resistance for Anisotropic Conductive Adhesive Assemblies
,” IEEE Trans. Compon. Packag. Technol.
1521-3331, 27
, pp. 317
–326
.15.
Kogut
, L.
, and Etsion
, I.
, 2002, “Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,” Trans. ASME, J. Appl. Mech.
0021-8936, 69
, pp. 657
–662
.16.
Abbott
, E. J.
, and Firestone
, F. A.
, 1933, “Specifying Surface Quality-A Method Based on Accurate Measurement and Comparison
,” Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501, 55
, pp. 569
–572
.17.
Chang
, W. R.
, Etsion
, I.
, and Bogy
, D. B.
, 1988, “Static Friction Coefficient Model for Metallic Rough Surfaces
,” Trans. ASME, J. Tribol.
0742-4787, 110
, pp. 57
–63
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.