In this paper, we analyze the impact of the cavitation model on the numerical assessment of lubricated journal bearings. We compare results using the classical Reynolds model and the so-called p-θ model proposed by Elrod and Adams [1974, “A Computer Program for Cavitation and Saturation Problems,” Proceedings of the First LEEDS-LYON Symposium on Cavitation and Related Phenomena in Lubrication, Leeds, UK] to fix the lack of mass conservation of Reynolds’ model. Both models are known to give quite similar predictions of load-carrying capacity and friction torque in nonstarved conditions, making Reynolds’ model the preferred model for its better numerical behavior. Here, we report on numerical comparisons of both models in the presence of microtextured bearing surfaces. We show that in the microtextured situation, Reynolds’ model largely underestimates the cavitated area, leading to inaccuracies in the estimation of several variables, such as the friction torque. This dictates that only mass-conserving models should be used when dealing with microtextured bearings.

1.
Kato
,
T.
, and
Obara
,
S.
, 1996, “
Improvement in Dynamic Characteristics of Circular Journal Bearings by Means of Longitudinal Microgrooves
,”
Tribol. Trans.
1040-2004,
39
, pp.
462
468
.
2.
Ryk
,
G.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2002, “
Experimental Investigation of Laser Texturing for Reciprocating Automotive Components
,”
Tribol. Trans.
1040-2004,
45
, pp.
444
449
.
3.
Kovalchenko
,
A.
,
Ajayi
,
O.
,
Erdemir
,
A.
,
Etsion
,
I.
, and
Fenske
,
G.
, 2004, “
The Effect of Laser Texturing of Steel Surfaces and Speed-Load Parameters on the Transition of Lubrication Regime From Boundary to Hydrodynamic
,”
Tribol. Trans.
1040-2004,
47
, pp.
299
307
.
4.
Wang
,
Q. J.
, and
Zhu
,
D.
, 2005, “
Virtual Texturing: Modeling the Performance of Lubricated Contacts of Engineered Surfaces
,”
ASME J. Tribol.
0742-4787,
127
, pp.
722
728
.
5.
Bayada
,
G.
,
Martin
,
S.
, and
Vazquez
,
C.
, 2005, “
An Average Flow Model of the Reynolds Roughness Including a Mass-Flow Preserving Cavitation Model
,”
ASME J. Tribol.
0742-4787,
127
, pp.
793
802
.
6.
Etsion
,
I.
, and
Halperin
,
G.
, 2002, “
A Laser Surface Textured Hydrostatic Mechanical Seal
,”
Tribol. Trans.
1040-2004,
45
, pp.
430
434
.
7.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2003, “
A Laser Surface Textured Parallel Thrust Bearing
,”
Tribol. Trans.
1040-2004,
46
, pp.
397
403
.
8.
Buscaglia
,
G. C.
,
Ciuperca
,
S.
, and
Jai
,
M.
, 2005, “
The Effect of Periodic Textures on the Static Characteristics of Thrust Bearings
,”
ASME J. Tribol.
0742-4787,
127
, pp.
899
902
.
9.
Buscaglia
,
G. C.
,
Quiroga
,
A.
,
Bayada
,
G.
, and
Jai
,
M.
, 2005, “
Sensitivity of Lubricated Devices to Changes in Their Macro/Microscopic Shape
,”
Proceedings of the Sixth World Congress on Structural and Multidisciplinary Optimization
,
Rio de Janeiro
,
Brazil
.
10.
Etsion
,
I.
, 2005, “
State of the Art in Laser Surface Texturing
,”
ASME J. Tribol.
0742-4787,
127
, pp.
248
253
.
11.
Elrod
,
H. G.
, and
Adams
,
M.
, 1974, “
A Computer Program for Cavitation and Starvation Problems
,”
Proceedings of the First LEEDS-LYON Symposium on Cavitation and Related Phenomena in Lubrication
, Leeds, UK, pp.
37
41
.
12.
Bayada
,
G.
, and
Chambat
,
M.
, 1984, “
Existence and Uniqueness for a Lubrication Problem With Non Regular Conditions on the Free Boundary
,”
Boll. Unione Mat. Ital.
0041-7084,
3-B
(
6
), pp.
543
557
.
13.
Bayada
,
G.
, and
Du Parquet
,
J.
, 1974, “
The Influence of Operating Parameters on the Cavitation Frontier in a Dynamically Loaded Narrow Journal Bearing
,”
First LEEDS-LYON Symposium on Cavitation and Related Phenomena in Lubrication
, Leeds, UK, pp.
101
108
.
14.
Bayada
,
G.
, and
Chambat
,
M.
, 1986, “
Sur quelque Modelisation de la Zone de Cavitation en Lubrification Hydrodynamique
,”
J. Mec. Theor. Appl.
0750-7240,
5
, pp.
703
729
.
15.
Jakobson
,
B.
, and
Floberg
,
L.
, 1957, “
The Finite Journal Bearing Considering Vaporization
,”
Tran. Chalmers Univ. Tech.
,
190
, pp.
1
116
.
16.
Bayada
,
G.
, and
Chambat
,
M.
, 1986, “
The Transition between the Stokes Equation and the Reynolds Equation: A Mathematical Proof
,”
Appl. Math. Optim.
0095-4616,
14
, pp.
73
93
.
17.
Etsion
,
I.
, and
Pinkus
,
O.
, 1974, “
Analysis of Short Journal Bearings With New Upstream Boundary Conditions
,”
ASME J. Lubr. Technol.
0022-2305,
96
, pp.
489
496
.
You do not currently have access to this content.