By applying the line integral of Barnett–Lothe tensors on oblique planes, the three-dimensional rough surface contact problem for a semi-infinite anisotropic elastic half-plane in contact with a rough rigid sphere is formulated. The conjugate gradient technique of analytical continuation was employed to determine the contact parameters. The general solutions due to varying degrees of anisotropy and mechanical boundary conditions are obtained, and examples with fiber-reinforced composites are presented.
Issue Section:
Contact Mechanics
1.
Fredholm
, I.
, 1900, “Sur les Equations de l’Equilibre d’un Corps Solide Elastique
,” Acta Math.
0001-5962, 23
, pp. 1
–42
.2.
Lifshitz
, I. M.
, and Rozenzweig
, L. N.
, 1947, “On the Construction of the Green’s Tensor for the Basic Equation of the Theory of Elasticity of an Anisotropic Infinite Medium
,” Zh. Eksp. Teor. Fiz.
0044-4510, 17
, pp. 783
–791
.3.
Synge
, J. L.
, 1957, The Hypercircle in Mathematical Physics
, Cambridge University Press
, Cambridge
.4.
Mura
, T.
, 1987, Micromechanics of Defects in Solids
, Martinus Nijhoff
, Dordrecht
.5.
Ting
, T. C. T.
, and Lee
, V. G.
, 1997, “The Three-Dimensional Elastostatic Green’s Function for General Anisotropic Linear Elastic Solids
,” Q. J. Mech. Appl. Math.
0033-5614, 50
, pp. 407
–426
.6.
Stroh
, A. N.
, 1958, “Dislocations and Cracks in Anisotropic Elasticity
,” Philos. Mag.
0031-8086, 3
, pp. 625
–646
.7.
Stroh
, A. N.
, 1962, “Steady-State Problems in Anisotropic Elasticity
,” J. Math. Phys.
0022-2488, 41
, pp. 77
–103
.8.
Tonon
, F.
, Fan
, E.
, and Amadei
, B.
, 2001, “Green’s Functions and BEM formulation for 3D Anisotropic Media
,” Comput. Struct.
0045-7949, 79
, pp. 469
–482
.9.
Wang
, C. Y.
, 1997, “Elastic Fields Produced by a Point Source in Solids of General Anisotropy
,” J. Eng. Math.
0022-0833, 32
, pp. 41
–52
.10.
Willis
, J. R.
, 1965, “The Elastic Interaction Energy of Dislocation Loops in Anisotropic Media
,” Q. J. Mech. Appl. Math.
0033-5614, 18
, pp. 419
–433
.11.
Pan
, Y. C.
, and Chou
, T. W.
, 1976, “Point Force Solution for an Infinite Transversely Isotropic Solid
,” ASME Trans. J. Appl. Mech.
0021-8936, 43
, pp. 608
–612
.12.
Rongved
, L.
, 1955, “Force Interior to One of Two Joined Semi-Infinite Solids
,” Proceedings of the Second Midwestern Conference on Solid Mechanics
, pp. 1
–13
.13.
Dundurs
, J.
, and Hetenyi
, M.
, 1965, “Transmission of Force Between Two Semi-Infinite Solids
,” ASME Trans. J. Appl. Mech.
0021-8936, 32
, pp. 671
–674
.14.
Fares
, N.
, and Li
, V. C.
, 1988, “General Image Method in a Plane-Layered Elastostatic Medium
,” ASME Trans. J. Appl. Mech.
0021-8936, 55
, pp. 781
–785
.15.
Yu
, H. Y.
, and Sanday
, S. C.
, 1991, “Elastic Fields in Joined Half-Spaces Due to Nuclei of Strain
,” Proc. R. Soc. London, Ser. A
1364-5021, 434
, pp. 503
–519
.16.
Walpole
, L. J.
, 1996, “An Elastic Singularity in Joined Half-Spaces
,” Int. J. Eng. Sci.
0020-7225, 34
, pp. 629
–638
.17.
Guzina
, B. B.
, and Pak
, R. Y. S.
, 1999, “Static Fundamental Solutions for a Bi-Material Full-Space
,” Int. J. Solids Struct.
0020-7683, 36
, pp. 493
–516
.18.
Fares
, N.
, 1987, “Green’s Functions for Plane-Layered Elastostatic and Viscoelastic Regions With Application to 3D Crack Analysis
,” Ph.D. thesis, Massachusetts Institute of Technology.19.
Pan
, Y. C.
, and Chou
, T. W.
, 1979, “Green’s Function Solutions for Semi-Infinite Transversely Isotropic Materials
,” Int. J. Eng. Sci.
0020-7225, 17
, pp. 45
–55
.20.
Pan
, Y. C.
, and Chou
, T. W.
, 1979, “Green’s Functions for Two-Phase Transversely Isotropic Materials
,” ASME Trans. J. Appl. Mech.
0021-8936, 46
, pp. 551
–556
.21.
Yue
, Z. Q.
, 1995, “Elastic Fields in Two Joined Transversely Isotropic Solids Due to Concentrated Forces
,” Int. J. Eng. Sci.
0020-7225, 33
, pp. 351
–369
.22.
Yu
, H. Y.
, Sanday
, S. C.
, Rath
, B. B.
, and Chang
, C. I.
, 1995, “Elastic Fields Due to Defects in Transversely Isotropic Bimaterials
,” Proc. R. Soc. London, Ser. A
1364-5021, 449
, pp. 1
–30
.23.
Liao
, J. J.
, and Wang
, C. D.
, 1998, “Elastic Solution for a Transversely Isotropic Half-Space Subjected to a Point Load
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 22
, pp. 425
–447
.24.
Wang
, C. D.
, and Liao
, J. J.
, 1999, “Elastic Solutions for a Transversely Isotropic Half-Space Subjected to Buried Asymmetric Loads
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 23
, pp. 115
–139
.25.
Gosling
, T. J.
, and Willis
, J. R.
, 1994, “A Line-Integral Representation for the Stresses Due to an Arbitrary Dislocation in an Isotropic Half-Space
,” J. Mech. Phys. Solids
0022-5096, 42
(8
), pp. 1199
–1221
.26.
Barnett
, D. M.
, and Lothe
, J.
, 1975, “Line Force Loadings on Anisotropic Half-Spaces and Wedges
,” Phys. Norv.
0031-8930, 8
(1
), pp. 13
–22
.27.
Walker
, K. P.
, 1993, “Fourier Integral Representation of the Green’s Function for an Anisotropic Elastic Half-Space
,” Proc. R. Soc. London, Ser. A
1364-5021, 443
, pp. 367
–389
.28.
Qu
, J.
, and Xue
, Y.
, 1998, “Three-Dimensional Interface Cracks in Anisotropic Bimaterials: The Non-Oscillatory Case
,” ASME Trans. J. Appl. Mech.
0021-8936, 65
, pp. 1048
–1055
.29.
Wu
, K. C.
, 1998, “Generalization of the Stroh Formalism to 3-Dimensional Anisotropic Elasticity
,” J. Elast.
0374-3535, 51
, pp. 213
–225
.30.
Ting
, T. C. T.
, 1996, Anisotropic Elasticity: Theory and Applications
, Oxford Science
, New York
.31.
Yuan
, F. G.
, Yang
, S.
, and Yang
, B.
, 2003, “Three-Dimensional Green’s Functions for Composite Laminates
,” Int. J. Solids Struct.
0020-7683, 40
(2
), p. 331
–342
.32.
Polonsky
, I. A.
, and Keer
, L. M.
, 1999, “A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,” Wear
0043-1648, 231
, pp. 206
–219
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.