Over the past few years, the importance of nanoscale technology in industries, such as data storage, micro-electro-mechanical systems (MEMs), and conventional sliding and rolling element bearings, has increased significantly. This is due to increased performance criteria and emerging technologies at smaller scales. One way to increase tribological performance of such applications is through nanoscale surface texturing. These textures will allow for precise control of the performance of lubricated surfaces with very thin films. This work examines how the behavior of the lubricant changes as the geometry of the texture is decreased toward the nanoscale. This work uses existing scale dependent lubrication theories to model the hydrodynamic lubrication of textured surfaces in attempt to predict how nanoscale textures will perform. The theoretical results show that the scale effects of a lubricant between textured surfaces can decrease the load carrying capacity while also decreasing the friction force. Overall, the friction force decreases more than the load carrying capacity and so the effective friction coefficient is decreased. It should be noted that relative to larger scale textured surfaces, the load support can also decrease with the decreasing scale of the texture.

1.
Kligerman
,
Y.
, and
Etsion
,
I.
, 2001, “
Analysis of the Hydrodynamic Effects in a Surface Textured Circumferential Gas Seal
,”
Tribol. Trans.
1040-2004,
44
(
3
), pp.
472
478
.
2.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Halperin
,
G.
, 1999, “
Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces
,”
Tribol. Trans.
1040-2004,
42
(
3
), pp.
511
516
.
3.
Kovalchenko
,
A.
,
Ajayi
,
O.
,
Erdemir
,
A.
,
Fenske
,
G.
, and
Etsion
,
I.
, 2004, “
The Effect of Laser Texturing of Steel Surfaces and Speed-Load Parameters on the Transition of Lubrication Regime From Boundary to Hydrodynamic
,”
Tribol. Trans.
1040-2004,
47
(
2
), pp.
299
307
.
4.
Ryk
,
G.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2002, “
Experimental Investigation of Laser Surface Texturing for Reciprocating Automotive Components
,”
STLE Tribol. Trans.
1040-2004,
45
(
4
), pp.
444
449
.
5.
Ronen
,
A.
,
Etsion
,
I.
, and
Kligerman
,
Y.
, 2001, “
Friction-Reducing Surface-Texturing in Reciprocating Automotive Components
,”
STLE Tribol. Trans.
1040-2004,
44
(
3
), pp.
359
366
.
6.
Etsion
,
I.
,
Halperin
,
G.
, and
Ryk
,
G.
, 1999, “
Improving Tribological Performance of Mechanical Components by Laser Surface Texturing
,” ASTM Special Technical Publication, p.
441
.
7.
Etsion
,
I.
, and
Halperin
,
G.
, 2002, “
A Laser Surface Textured Hydrostatic Mechanical Seal
,”
Tribol. Trans.
1040-2004,
45
(
3
), pp.
430
434
.
8.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2003, “
A Laser Surface Textured Parallel Thrust Bearing
,”
Tribol. Trans.
1040-2004,
46
(
3
), pp.
397
403
.
9.
Glavatskih
,
S.
,
Mccarthy
,
D.
, and
Sherrington
,
I.
, 2005, “
Hydrodynamic Performance of a Thrust Bearing With Micropatterned Pads
,”
Tribol. Trans.
1040-2004,
48
(
4
), pp.
492
498
.
10.
Wang
,
X.
,
Kato
,
K.
,
Adachi
,
K.
, and
Aizawa
,
K.
, 2003, “
Loads Carrying Capacity Map for the Surface Texture Design of Sic Thrust Bearing Sliding in Water
,”
Tribol. Int.
0301-679X,
36
(
3
), pp.
189
197
.
11.
Lebeck
,
A. O.
, 1987, “
Parallel Sliding Load Support in the Mixed Friction Regime. Part 1—The Experimental Data; Part 2—Evaluation of the Mechanisms
,”
ASME J. Tribol.
0742-4787,
109
(
1
), pp.
189
205
.
12.
Wang
,
X.
,
Kato
,
K.
,
Adachi
,
K.
, and
Aizawa
,
K.
, 2001, “
The Effect of Laser Texturing of Sic Surface on the Critical Load for the Transition of Water Lubrication Mode From Hydrodynamic to Mixed
,”
Tribol. Int.
0301-679X,
34
(
10
), pp.
703
711
.
13.
Wang
,
Q. J.
, and
Zhu
,
D.
, 2005, “
Virtual Texturing: Modeling the Performance of Lubricated Contacts of Engineered Surfaces
,”
ASME J. Tribol.
0742-4787,
127
(
4
), pp.
722
728
.
14.
Harp
,
S. R.
, and
Salant
,
R. F.
, 2002, “
Inter-Asperity Cavitation and Global Cavitation in Seals: An Average Flow Analysis
,”
Tribol. Int.
0301-679X,
35
(
2
), pp.
113
121
.
15.
Ruan
,
B.
,
Salant
,
R. F.
, and
Green
,
I.
, 1997, “
Mixed Lubrication Model of Liquid/Gas Mechanical Face Seals
,”
Tribol. Trans.
1040-2004,
40
(
4
), pp.
647
657
.
16.
Shen
,
D.
, and
Salant
,
R. F.
, 2003, “
Elastohydrodynamic Analysis of the Effect of Shaft Surface Finish on Rotary Lip Seal Behavior
,”
Tribol. Trans.
1040-2004,
46
(
3
), pp.
391
396
.
17.
Shi
,
F.
, and
Salant
,
R. F.
, 2000, “
Mixed Soft Elastohydrodynamic Lubrication Model With Interasperity Cavitation and Surface Shear Deformation
,”
ASME J. Tribol.
0742-4787,
122
(
1
), pp.
308
316
.
18.
Tønder
,
K.
, and
Salant
,
R.
, 1992, “
Non-Leaking Lip Seals: A Roughness Effect Study
,”
ASME J. Tribol.
0742-4787,
114
(
3
), pp.
595
599
.
19.
Piner
,
R. D.
,
Zhu
,
J.
,
Xu
,
F.
,
Hong
,
S.
, and
Mirkin
,
C. A.
, 1999, “
‘Dip-Pen’ Nanolithography
,”
Science
0036-8075,
283
(
5402
), pp.
661
663
.
20.
Guarini
,
K. W.
,
Black
,
C. T.
,
Milkove
,
K. R.
, and
Sandstrom
,
R. L.
, 2001, “
Nanoscale Patterning Using Self-Assembled Polymers for Semiconductor Applications
,”
J. Vac. Sci. Technol.
0022-5355,
19
(
6
), pp.
2784
2788
.
21.
Daniel
,
C.
,
Mücklich
,
F.
, and
Liu
,
Z.
, 2003, “
Periodical Micro-Nano-Structuring of Metallic Surfaces by Interfering Laser Beams
,”
Appl. Surf. Sci.
0169-4332,
208–209
, pp.
317
321
.
22.
Miller
,
M.
,
Doyle
,
G.
,
Stacey
,
N.
,
Xu
,
F.
,
Sreenivasan
,
S. V.
,
Watts
,
M.
, and
LaBrake
,
D. L.
, 2005, “
Fabrication of Nanometer Sized Features on Non-Flat Substrates Using a Nano-Imprint Lithography Process
,”
Proc. SPIE
0277-786X,
5751
, pp.
994
1002
.
23.
Streator
,
J. L.
,
Gerhardstein
,
J. P.
, and
Mccollum
,
C. B.
, 1994, “
The Low-Pressure Rheology of Ultra-Thin Lubricant Films and Its Influence on Sliding Contact
,”
ASME J. Tribol.
0742-4787,
116
, pp.
119
126
.
24.
Luo
,
J.
,
Huang
,
P.
,
Wen
,
S.
, and
Li
,
L. K. Y.
, 1999, “
Characteristics of Liquid Lubricant Films at the Nano-Scale
,”
ASME J. Tribol.
0742-4787,
121
(
4
), pp.
872
878
.
25.
Bair
,
S.
, 2002, “
The Shear Rheology of Thin Compressed Liquid Films
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
216
(
1
), pp.
1
17
.
26.
Bair
,
S.
,
Vergne
,
P.
, and
Marchetti
,
M.
, 2002, “
The Effect of Shear-Thinning on Film Thickness for Space Lubricants
,”
Tribol. Trans.
1040-2004,
45
(
3
), pp.
330
333
.
27.
Robbins
,
M. O.
,
Thompson
,
P. A.
, and
Grest
,
G. S.
, 1993, “
Simulations of Nanometer-Thick Lubricating Films
,”
MRS Bull.
0883-7694,
18
(
5
), pp.
45
49
.
28.
Kawaguchi
,
T.
, and
Matsukawa
,
H.
, 2002, “
Numerical Study of Nanoscale Lubrication and Friction at Solid Interfaces
,”
Mol. Phys.
0026-8976,
100
(
19
), pp.
3161
3166
.
29.
Jeng
,
Y. -R.
,
Chen
,
C. -C.
, and
Shyu
,
S. -H.
, 2004, “
Concentration Effects on Lubrication Rheology for Polymer Solution in Molecularly Thin Film Using Molecular Dynamics
,”
J. Appl. Phys.
0021-8979,
95
(
12
), pp.
8450
8455
.
30.
Martini
,
A.
,
Liu
,
Y.
,
Snurr
,
R. Q.
, and
Wang
,
Q. J.
, 2006, “
Molecular Dynamics Characterization of Thin Film Viscosity for Ehl Simulation
,”
Tribol. Lett.
1023-8883,
21
(
3
), pp.
217
225
.
31.
Martini
,
A.
,
Roxin
,
A.
,
Snurr
,
R. Q.
,
Wang
,
Q.
, and
Lichter
,
S.
, 2008, “
Molecular Mechanisms of Liquid Slip
,”
J. Fluid Mech.
0022-1120,
600
, pp.
257
269
.
32.
Martini
,
A.
,
Snurr
,
R. Q.
, and
Wang
,
Q.
, 2006, “
Origins of Pressure and Viscosity Oscillation With Film Thickness in Ultra Thin Lubricating Films
,”
STLE/ASME International Joint Tribology Conference
, San Antonio, TX.
33.
Tichy
,
J. A.
, 1995, “
A Porous Media Model for Thin Film Lubrication
,”
ASME J. Tribol.
0742-4787,
117
(
1
), pp.
16
21
.
34.
Cantow
,
M. J. R.
,
Ting
,
T. Y.
,
Barrall
,
E. M.
,
Porter
,
R. S.
, and
George
,
E. R.
, 1986, “
Shear Dependence of Viscosity for Perfluoropolyether Fluids
,”
Rheol. Acta.
,
25
(
1
), pp.
69
71
.
35.
Bhushan
,
B.
, 1990,
Tribology and Mechanics of Magnetic Storage Devices
,
Springer-Verlag
,
New York
.
36.
Winer
,
W. O.
, and
Bair
,
S.
, 1987, “
The Influence of Ambient Pressure on the Apparent Shear Thinning of Liquid Lubricants—An Overlooked Phenomenon
,” International Mechanical Engineering Paper No. C190/87.
37.
Streator
,
J. L.
, and
Gerhardstein
,
J. P.
, 1993, “
Lubrication Regimes for Nanometer-Scale Lubricant Films With Capillary Effects
,”
19th Leed-Lyon Symposium of Tribology
,
D.
Dowson
,
C. M.
Taylor
,
M.
Godet
, and
D.
Berthe
, eds.
38.
Hamrock
,
B. J.
, 1994,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York
.
39.
Williams
,
J. A.
, 2000,
Engineering Tribology
,
Oxford
,
New York
.
40.
Jackson
,
R. L.
, and
Green
,
I.
, 2006, “
The Behavior of Thrust Washer Bearings Considering Mixed Lubrication and Asperity Contact
,”
Tribol. Trans.
1040-2004,
49
(
2
), pp.
233
247
.
41.
Duvvuru
,
R. S.
,
Jackson
,
R. L.
, and
Hong
,
J. W.
, 2009, “
Self-Adapting Microscale Surface Grooves for Hydrodynamic Lubrication
,”
Tribol. Trans.
1040-2004,
52
(
1
), pp.
1
11
.
42.
Jackson
,
R. L.
, and
Green
,
I.
, 2008, “
The Thermoelastic Behavior of Thrust Washer Bearings Considering Boundary Lubrication, Asperity Contact and Thermoviscous Effects
,”
Tribol. Trans.
1040-2004,
51
(
1
), pp.
19
32
.
43.
Rayleigh
,
L.
, 1918, “
Notes on the Theory of Lubrication
,”
Philos. Mag.
1478-6435,
35
(
205
), pp.
1
12
.
You do not currently have access to this content.