Surface texturing is a promising way to expand the hydrodynamic lubrication regime and thereby modify the tribological properties of sliding surfaces. Spiral-groove textures in particular have attracted much attention over the past several decades because they produce a thicker lubrication film in the gap. However, no research has been reported on the effect of periodic texturing with a several 100 nm depth on hydrodynamic performance in submicrometer clearance with surface roughness. The purpose of the study reported here was to investigate the effect of such nanotexturing on hydrodynamic performance. This was done by conducting ring-on-disk friction tests, focusing on the existence of surface roughness in the narrow clearance. The samples were rings with various degrees of surface roughness and disks with spiral-groove textures produced by femtosecond laser processing. The friction coefficients experimentally obtained were plotted as a Stribeck curve and compared with a theoretical one calculated using a Reynolds equation formulated from two physical models, the Patir–Cheng average flow model and a sinusoidal wave model. The results showed that surface roughness did not affect the friction coefficient in the hydrodynamic lubrication regime. However, the hydrodynamic lubrication regime gradually shrank with an increase in surface roughness, and mild transitions to the mixed lubrication regime were observed at higher rotational speeds. The minimum clearances reached at the transition speed were almost the same, about 200–300 nm, for all experiments regardless of surface roughness.

References

1.
Hamilton
,
D. B.
,
Walowit
,
J. A.
, and
Allen
,
C. M.
,
1966
, “
A Theory of Lubrication by Micro-Asperities
,”
ASME J. Basic Eng.
,
88
(
1
), pp.
177
185
.10.1115/1.3645799
2.
Anno
,
J. N.
,
Walowit
,
J. A.
, and
Allen
,
C. M.
,
1968
, “
Micro-Asperity Lubrication
,”
ASME J. Lubr. Technol.
,
90
(
2
), pp.
351
355
.10.1115/1.3601568
3.
Etsion
,
I.
,
2004
, “
Improving Tribological Performance of Mechanical Components by Laser Texturing
,”
Tribol. Lett.
,
17
(
4
), pp.
733
737
.10.1007/s11249-004-8081-1
4.
Etsion
,
I.
,
2005
, “
State of the Art in Laser Surface Texturing
,”
ASME J. Tribol.
,
127
(
1
), pp.
248
253
.10.1115/1.1828070
5.
Dobrica
,
M. B.
,
Fillon
,
M.
,
Pascovici
,
M. D.
, and
Cicone
,
T.
,
2010
, “
Optimizing Surface Texture for Hydrodynamic Lubricated Contacts Using a Mass-Conserving Numerical Approach
,”
Proc. Inst. Mech. Eng. Part J.
,
224
(
8
), pp.
737
750
.10.1243/13506501JET673
6.
Han
,
J.
,
Fang
,
L.
,
Sun
,
J.
, and
Ge
,
S.
,
2010
, “
Hydrodynamic Lubrication of Micro-Dimple Textured Surface Using Three-Dimensional CFD
,”
Tribol. Trans.
,
53
(
6
), pp.
860
870
.10.1080/10402004.2010.496070
7.
Jiang
,
Z.
, and
Zhang
,
C.
,
2010
, “
Influence of Laser Surface Texturing Distribution Patterns on the Hydrodynamic Lubrication
,”
Adv. Mater. Res.
,
97–101
, pp.
1429
1432
.10.4028/www.scientific.net/AMR.97-101.1429
8.
Ramesh
,
A.
,
Akram
,
W.
,
Mishra
,
S. P.
,
Cannon
,
A. H.
,
Polycarpou
,
A. A.
, and
King
,
W. P.
,
2013
, “
Friction Characteristics of Micro-Textured Surfaces Under Mixed and Hydrodynamic Lubrication
,”
Tribol. Int.
,
57
, pp.
170
176
.10.1016/j.triboint.2012.07.020
9.
Etsion
,
I.
,
2013
, “
Modeling of Surface Texturing in Hydrodynamic Lubrication
,”
Friction
,
1
(
3
), pp.
195
209
.10.1007/s40544-013-0018-y
10.
Cupillard
,
S.
,
Glavatskih
,
S.
, and
Cervantes
,
M.
,
2008
, “
Computational Fluid Dynamics Analysis of a Journal Bearing With Surface Texturing
,”
Proc. Inst. Mech. Eng. Part J.
,
222
(
2
), pp.
97
107
.10.1243/13506501JET319
11.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2003
, “
A Laser Surface Textured Parallel Thrust Bearing
,”
Tribol. Trans.
,
46
(
3
), pp.
397
403
.10.1080/10402000308982643
12.
Glavatkih
,
S. B.
, and
McCarthey
,
D. M. C.
,
2005
, “
Hydrodynamic Performance of a Thrust Bearing With Micro-Patterned Pads
,”
Tribol. Trans.
,
48
(
4
), pp.
492
498
.10.1080/05698190500313486
13.
Gupta
,
K. K.
,
Kumar
,
R.
,
Kumar
,
H.
, and
Sharma
,
M.
,
2013
, “
Study on Effect of Surface Texture on the Performance of Hydrodynamic Journal Bearing
,”
Int. J. Eng. Adv. Technol.
,
3
(
1
), pp.
49
54
.
14.
Kligerman
,
Y.
, and
Etsion
,
I.
,
2001
, “
Analysis of the Hydrodynamic Effects in a Surface Textured Circumferential Gas Seal
,”
Tribol. Trans.
,
44
(
3
), pp.
472
478
.10.1080/10402000108982483
15.
Etsion
,
I.
,
2004
, “
Improving Tribological Performance of Mechanical Seals by Laser Surface Texturing
,”
Tribol. Lett.
,
17
(
4
), pp.
733
737
.10.1007/s11249-004-8081-1
16.
Bai
,
S.
,
Peng
,
X.
,
Li
,
Y.
, and
Sheng
,
S.
,
2010
, “
A Hydrodynamic Laser Surface-Textured Gas Mechanical Face Seal
,”
Tribol. Lett.
,
38
(
2
), pp.
187
194
.10.1007/s11249-010-9589-1
17.
Vohr
,
J. H.
, and
Chow
,
C. Y.
,
1965
, “
Characteristics of Herringbone-Grooved Gas-Lubricated Journal Bearings
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
568
578
.10.1115/1.3650607
18.
Hirs
,
G. G.
,
1965
, “
The Load Capacity and Stability Characteristics of HydroDynamic Grooved Journal Bearings
,”
ASLE Trans.
,
8
(
3
), pp.
296
305
.10.1080/05698196508972102
19.
Muijderman
,
E. A.
,
1967
, “
Analysis and Design of Spiral-Groove Bearings
,”
ASME J. Lubr. Technol.
,
89
(
3
), pp.
291
306
.10.1115/1.3616974
20.
Kawabata
,
N.
,
Ozawa
,
Y.
,
Kamaya
,
S.
, and
Miyake
,
Y.
,
1989
, “
Static Characteristics of the Regular and Reversible Rotation Type Herringbone Grooved Journal Bearing
,”
ASME J. Tribol.
,
111
(
3
), pp.
484
490
.10.1115/1.3261955
21.
Kang
,
K.
,
Rhim
,
Y.
, and
Sung
,
K.
,
1996
, “
A Study of the Oil-Lubricated Herringbone-Grooved Journal Bearing—Part I: Numerical Analysis
,”
ASME J. Tribol.
,
118
(
4
), pp.
906
911
.10.1115/1.2831627
22.
Zirkelback
,
N.
, and
Andrés
,
L. S.
,
1998
, “
Finite Element Analysis of Herringbone Groove Journal Bearings: A Parametric Study
,”
ASME J. Tribol.
,
120
(
2
), pp.
230
240
.10.1115/1.2834415
23.
Jang
,
G. H.
, and
Chang
,
D. I.
,
1999
, “
Analysis of a Hydrodynamic Herringbone Grooved Journal Bearing Considering Cavitation
,”
ASME J. Tribol.
,
122
(
1
), pp.
103
109
.10.1115/1.555333
24.
Hirayama
,
T.
,
Sakurai
,
T.
, and
Yabe
,
H.
,
2004
, “
A Theoretical Analysis Considering Cavitation Occurrence in Oil-Lubricated Spiral-Grooved Journal Bearings With Experimental Verification
,”
ASME J. Tribol.
,
126
(
3
), pp.
490
498
.10.1115/1.1691436
25.
Ikeda
,
S.
,
Arakawa
,
Y.
,
Hishida
,
N.
,
Hirayama
,
T.
,
Matsuoka
,
T.
, and
Yabe
,
H.
,
2010
, “
Herringbone-Grooved Bearing With Non-Uniform Grooves for Higher Speed Spindle
,”
Lubr. Sci.
,
22
(
9
), pp.
377
392
.10.1002/ls.133
26.
Imai
,
N.
, and
Kato
,
T.
,
2013
, “
Effects of Texture Patterns on Hydrodynamic and Mixed Lubrication Characteristics
,”
Proc. Inst. Mech. Eng. Part J.
,
227
(
8
), pp.
898
904
.10.1177/1350650113478868
27.
Inomata
,
Y.
,
Fukui
,
K.
, and
Shirasawa
,
K.
,
1997
, “
Surface Texturing of Large Area Multicrystalline Silicon Solar Cells Using Reactive Ion Etching Method
,”
Sol. Energy Mater. Sol. Cells
,
48
(
1–4
), pp.
237
242
.10.1016/S0927-0248(97)00106-2
28.
Greco
,
A.
,
Raphaelson
,
S.
,
Ehmann
,
K.
,
Wang
,
Q. J.
, and
Lin
,
C.
,
2009
, “
Surface Texturing of Tribological Interfaces Using the Vibromechanical Texturing Method
,”
ASME J. Tribol.
,
131
(
4
), p.
061005
.10.1115/1.4000418
29.
Zou
,
M.
,
Cai
,
L.
, and
Wang
,
H.
,
2006
, “
Adhesion and Friction Studies of a Nano-Textured Surface Produced by Spin Coating of Colloidal Silica Nanoparticle Solution
,”
Tribol., Lett.
,
21
(
1
), pp.
25
30
.10.1007/s11249-005-9004-5
30.
Byun
,
J. W.
,
Shin
,
H. S.
,
Kwon
,
M. H.
,
Kim
,
B. H.
, and
Chu
,
C. N.
,
2010
, “
Surface Texturing by Micro ECM for Friction Reduction
,”
Int. J. Precis. Eng. Manuf.
,
11
(
5
), pp.
747
753
.10.1007/s12541-010-0088-y
31.
Sakai
,
T.
,
Nedyalkov
,
N.
, and
Obara
,
M.
,
2007
, “
Friction Characteristics of Submicrometer-Structured Surfaces Fabricated by Particle-Assisted Near-Field Enhancement With Femtosecond Laser
,”
J. Phys D.
,
40
(
23
), pp.
7485
7491
.10.1088/0022-3727/40/23/035
32.
Stašić
,
J.
,
Gaković
,
B.
,
Perrie
,
W.
,
Watkins
,
K.
,
Petrović
,
S.
, and
Trtica
,
M.
,
2011
, “
Surface Texturing of the Carbon Steel AISI 1045 Using Femtosecond Laser in Single Pulse and Scanning Regime
,”
Appl. Surf. Sci.
,
258
(
1
), pp.
290
296
.10.1016/j.apsusc.2011.08.052
33.
Wang
,
H.
,
Kongsuwan
,
P.
,
Satoh
,
G.
, and
Yao
,
L.
,
2013
, “
Femtosecond Laser-Induced Simultaneous Surface Texturing and Crystallization of a-Si:H Thin Film: Morphology Study
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1691
1703
.10.1007/s00170-012-4291-0
34.
Canon Machinery Inc.
,
2013
, “
Fine Periodic Structures by Femtosecond Laser Processing
,” http://www.canon-machinery.co.jp/new-business/SUB2/surfbeat/sub.htm
35.
Wang
,
L.
,
Wang
,
W.
,
Wang
,
H.
,
Ma
,
T.
, and
Hu
,
Y.
,
2014
, “
Numerical Analysis on the Factors Affecting the Hydrodynamic Performance for the Parallel Surfaces With Microtextures
,”
ASME J. Tribol.
,
136
(
2
), p.
021702
.10.1115/1.4026060
36.
Tanaka
,
Y.
,
Okada
,
K.
,
Hirayama
,
T.
,
Matsuoka
,
T.
,
Sawada
,
H.
,
Kawahara
,
K.
, and
Noguchi
,
S.
,
2012
, “
Lubricated Friction Reduction by Spiral-Groove-Shape Nano-Texturing
,”
Key Eng. Mater.
,
516
, pp.
431
436
.10.4028/www.scientific.net/KEM.516.431
37.
Ji
,
J.
,
Fu
,
Y.
, and
Bi
,
Q.
,
2014
, “
Influence of Geometric Shapes on the Hydrodynamic Lubrication of a Partially Textured Slider With Micro-Grooves
,”
ASME J. Tribol.
,
136
(
4
), p.
041702
.10.1115/1.4027633
38.
Hirayama
,
T.
,
Ikeda
,
M.
,
Suzuki
,
T.
,
Matsuoka
,
T.
,
Sawada
,
H.
, and
Kawahara
,
K.
,
2014
, “
Effect of Nano-Texturing on Increase in EHL Oil Film Thickness
,”
ASME J. Tribol.
,
136
(
3
), p.
031501
.10.1115/1.4027286
39.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.10.1115/1.3453103
40.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
220
229
.10.1115/1.3453329
You do not currently have access to this content.