In aerostatic bearing analysis, determining film pressure by solving the Reynolds equation in a numerical model is more effective than conducting bearing experiments or performing computational fluid dynamics (CFD) simulations. However, the discharge coefficient of an orifice-type restrictor is generally a given number that dominates model accuracy. This study investigated the influence of geometry and flow parameters on this discharge coefficient. The results indicate that this discharge coefficient is sensitive to the orifice diameter and film thickness and that the effects of the supply pressure, bearing radius, supply orifice length, supply passage diameter, conicity depth, and conicity angle can be disregarded. This study also built a surrogate model of this discharge coefficient based on the orifice diameter and film thickness by using artificial neural networks (ANNs).

References

1.
Chen
,
X. D.
, and
He
,
X. M.
,
2006
, “
The Effect of the Recess Shape on Performance Analysis of the Gas-Lubricated Bearing in Optical Lithography
,”
Tribol. Int.
,
39
(
11
), pp.
1336
1341
.10.1016/j.triboint.2005.10.005
2.
Li
,
Y.
, and
Ding
,
H.
,
2007
, “
Influences of the Geometrical Parameters of Aerostatic Thrust Bearing With Pocketed Orifice-Type Restrictor on Its Performance
,”
Tribol. Int.
,
40
(
7
), pp.
1120
1126
.10.1016/j.triboint.2006.11.001
3.
Jeng
,
Y. R.
, and
Chang
,
S. H.
,
2013
, “
Comparison Between the Effects of Single-Pad and Double-Pad Aerostatic Bearings With Pocketed Orifices on Bearing Stiffness
,”
Tribol. Int.
,
66
, pp.
12
18
.10.1016/j.triboint.2013.04.003
4.
Wang
,
N.
, and
Cha
,
K. C.
,
2010
, “
Multi-Objective Optimization of Air Bearings Using Hypercube-Dividing Method
,”
Tribol. Int.
,
43
(
9
), pp.
1631
1638
.10.1016/j.triboint.2010.03.009
5.
Chang
,
S. H.
, and
Jeng
,
Y. R.
,
2014
, “
A Modified Particle Swarm Optimization Algorithm for the Design of a Double-Pad Aerostatic Bearing With a Pocketed Orifice-Type Restrictor
,”
ASME J. Tribol.
,
136
(
2
), p.
021701
.10.1115/1.4026061
6.
Belforte
,
G.
,
Raparelli
,
T.
,
Trivella
,
A.
,
Viktorov
,
V.
, and
Visconte
,
C.
,
2006
, “
Numerical Analysis on the Supply Hole Discharge Coefficient in Aerostatic Bearings
,”
International Conference on Tribology
,
Parma, Italy
, Sept. 20–22, Paper No. AITC-AIT 2006.
7.
Eleshaky
,
M. E.
,
2009
, “
CFD Investigation of Pressure Depressions in Aerostatic Circular Thrust Bearings
,”
Tribol. Int.
,
42
(
7
), pp.
1108
1117
.10.1016/j.triboint.2009.03.011
8.
Nishio
,
U.
,
Somaya
,
K.
, and
Yoshimoto
,
S.
,
2011
, “
Numerical Calculation and Experimental Verification of Static and Dynamic Characteristics of Aerostatic Thrust Bearings With Small Feedholes
,”
Tribol. Int.
,
44
(
12
), pp.
1790
1795
.10.1016/j.triboint.2011.07.004
9.
Belforte
,
G.
,
Raparelli
,
T.
,
Viktorov
,
V.
, and
Trivella
,
A.
,
2007
, “
Discharge Coefficients of Orifice-Type Restrictor for Aerostatic Bearings
,”
Tribol. Int.
,
40
(
3
), pp.
512
521
.10.1016/j.triboint.2006.05.003
10.
Miyatake
,
M.
, and
Yoshimoto
,
S.
,
2010
, “
Numerical Investigation of Static and Dynamic Characteristics of Aerostatic Thrust Bearings With Small Feed Holes
,”
Tribol. Int.
,
43
(
8
), pp.
1353
1359
.10.1016/j.triboint.2010.01.002
11.
Neves
,
M. T.
,
Schwarz
,
V. A.
, and
Menon
,
G. J.
,
2010
, “
Discharge Coefficient Influence on the Performance of Aerostatic Journal Bearings
,”
Tribol. Int.
,
43
(
4
), pp.
746
751
.10.1016/j.triboint.2009.11.001
12.
Senatore
,
A.
,
D'Agostino
,
V.
,
Di Giuda
,
R.
, and
Petrone
,
V.
,
2011
, “
Experimental Investigation and Neural Network Prediction of Brakes and Clutch Material Frictional Behaviour Considering the Sliding Acceleration Influence
,”
Tribol. Int.
,
44
(
10
), pp.
1199
1207
.10.1016/j.triboint.2011.05.022
13.
Gyurova
,
L. A.
, and
Friedrich
,
K.
,
2011
, “
Artificial Neural Networks for Predicting Sliding Friction and Wear Properties of Polyphenylene Sulfide Composites
,”
Tribol. Int.
,
44
(
5
), pp.
603
609
.10.1016/j.triboint.2010.12.011
14.
Kurban
,
A. O.
, and
Yildirim
,
S.
,
2003
, “
Analysis of a Hydrodynamic Thrust Bearing With Elastic Deformation Using a Recurrent Neural Network
,”
Tribol. Int.
,
36
(
12
), pp.
943
948
.10.1016/S0301-679X(03)00090-2
15.
Chang
,
Y. Z.
, and
Wang
,
N.
,
2005
, “
Tribological Performance Prediction Using an Artificial Neural Network Optimized by the DIRECT Algorithm
,”
ASME
Paper No. WTC2005-63413. 10.1115/WTC2005-63413
16.
Tsai
,
C. M.
, and
Wang
,
N.
,
2007
, “
An Assessment of Neural Network Metamodels for Thermohydrodynamic Lubrication Analysis
,”
Society of Tribologists and Lubrication Engineers (STLE) 62nd Annual Meeting
,
Philadelphia, PA
, May 6–10.
You do not currently have access to this content.