In order to obtain a fast solution scheme, the trajectory piecewise linear (TPWL) method is applied to the transient elastohydrodynamic (EHD) line contact problem for the first time. TPWL approximates the nonlinearity of a dynamical system by a weighted superposition of reduced linearized systems along specified trajectories. The method is compared to another reduced order model (ROM), based on Galerkin projection, Newton–Raphson scheme and an approximation of the nonlinear reduced system functions. The TPWL model provides further speed-up compared to the Newton–Raphson based method at a high accuracy.

References

1.
Christensen
,
H.
,
1962
, “
The Oil Film in a Closing Gap
,”
Proc. R. Soc. London A
,
266
(
1326
), pp.
312
328
.
2.
Lubrecht
,
A. A.
,
1987
, “
The Numerical Solution of the Elastohydrodynamically Lubricated Line and Point Contact Problem, Using Multigrid Techniques
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
3.
Brandt
,
A.
, and
Lubrecht
,
A. A.
,
1990
, “
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
,”
J. Comput. Phys.
,
90
(
2
), pp.
348
370
.
4.
Ren
,
N.
,
Zhu
,
D.
,
Chen
,
W. W.
,
Liu
,
Y.
, and
Wang
,
Q. J.
,
2008
, “
A Three-Dimensional Deterministic Model for Rough Surface Line-Contact EHL Problems
,”
ASME J. Tribol.
,
131
(
1
), p.
011501
.
5.
Hu
,
Y.-Z.
, and
Zhu
,
D.
,
1999
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.
6.
Chen
,
W. W.
,
Liu
,
S.
, and
Wang
,
Q. J.
,
2008
, “
Fast Fourier Transform Based Numerical Methods for Elasto-Plastic Contacts of Nominally Flat Surfaces
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
011022
.
7.
Habchi
,
W.
, and
Issa
,
J.
,
2013
, “
Fast and Reduced Full-System Finite Element Solution of Elastohydrodynamic Lubrication Problems: Line Contacts
,”
Adv. Eng. Software
,
56
, pp.
51
62
.
8.
Habchi
,
W.
,
2014
, “
Reduced Order Finite Element Model for Elastohydrodynamic Lubrication: Circular Contacts
,”
Tribol. Int.
,
71
, pp.
98
108
.
9.
Maier
,
D.
,
Hager
,
C.
,
Hetzler
,
H.
,
Fillot
,
N.
,
Vergne
,
P.
,
Dureisseix
,
D.
, and
Seemann
,
W.
,
2015
, “
A Nonlinear Model Order Reduction Approach to the Elastohydrodynamic Problem
,”
Tribol. Int.
,
82
, pp.
484
492
.
10.
Carlberg
,
K.
,
Bou-Mosleh
,
C.
, and
Farhat
,
C.
,
2011
, “
Efficient Nonlinear Model Reduction Via a Least-Squares Petrov–Galerkin Projection and Compressive Tensor Approximations
,”
Int. J. Numer. Methods Eng.
,
86
(
2
), pp.
155
181
.
11.
Carlberg
,
K.
,
Farhat
,
C.
,
Cortial
,
J.
, and
Amsallem
,
D.
,
2013
, “
The {GNAT} Method for Nonlinear Model Reduction: Effective Implementation and Application to Computational Fluid Dynamics and Turbulent Flows
,”
J. Comput. Phys.
,
242
, pp.
623
647
.
12.
Rewienski
,
M.
, and
White
,
J.
,
2003
, “
A Trajectory Piecewise-Linear Approach to Model Order Reduction and Fast Simulation of Nonlinear Circuits and Micromachined Devices
,”
IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst.
,
22
(
2
), pp.
155
170
.
13.
Rewienski
,
M. J.
,
2003
, “
A Trajectory Piecewise-Linear Approach to Model Order Reduction of Nonlinear Dynamical Systems
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
14.
Albunni
,
M. N.
,
2010
, “
Model Order Reduction of Moving Nonlinear Electromagnetic Devices
,” Ph.D. thesis, Technische Universität München, Munich, Germany.
15.
Nahvi
,
S. A.
,
un Nabi
,
M.
, and
Janardhanan
,
S.
,
2013
, “
Trajectory Piece-Wise Quasi-Linear Approximation of Large Non-Linear Dynamic Systems
,”
Int. J. Model. Identif. Control
,
19
(
4
), pp.
369
377
.
16.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R Soc. London
,
177
, pp.
157
234
.
17.
Wu
,
S.
,
1986
, “
A Penalty Formulation and Numerical Approximation of the Reynolds–Hertz Problem of Elastohydrodynamic Lubrication
,”
Int. J. Eng. Sci.
,
24
(
6
), pp.
1001
1013
.
18.
Flamant
,
A.
,
1892
, “
Sur la Répartition des Pressions dans un Solide Rectangulaire Chargé Transversalement
,”
C.R. Acad. Sci.
,
114
, pp.
1465
1468
.
19.
Hertz
,
H.
,
1881
, “
Über die Berührung Fester Elastischer Körper
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
20.
Venner
,
C.
,
1991
, “
Multilevel Solution of the EHL Line and Point Contact Problems
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
21.
Volkwein
,
S.
,
1999
,
Proper Orthogonal Decomposition and Singular Value Decomposition
,
Karl-Franzens-Universität Graz & Technische Universität Graz
,
Graz, Austria
.
22.
Goodyer
,
C. E.
,
2001
, “
Adaptive Numerical Methods for Elastohydrodynamic Lubrication
,” Ph.D. thesis, University of Leeds, Leeds, UK.
23.
Dowson
,
D.
, and
Higginson
,
G.
,
1966
,
Elastohydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication
,
Pergamon Press
,
Oxford, UK
.
24.
Roelands
,
C.
,
1966
, “
Correlational Aspects of the Viscosity–Temperature–Pressure Relationship of Lubricating Oils
,” Ph.D. thesis, Technical University Delft, Delft, The Netherlands.
You do not currently have access to this content.