In contacts of functionally graded elastic solids, the conditions produced are significantly different from the ones in similar contacts of homogeneous elastic materials. Especially it is true for heavily loaded lubricated contacts. The situation is even more diverse due to different dependences of the material elastic parameters on material depth. In the previous papers, the cases of lubricated contacts with coatings made of homogeneous materials are considered using asymptotic and semi-analytical methods. The goal of the paper is to determine the behavior of the coating effectiveness criteria in heavily loaded elastohydrodynamically lubricated (EHL) contacts for coatings with elastic modulus varying linearly and exponentially across the coating thickness as well as to compare the results with the case of coatings made of homogeneous materials. The above criteria include the criteria on the lubrication film thickness and friction force. The approach used for analyzing the influence of functionally graded elastic materials on parameters of heavily loaded line EHL contacts is based on the asymptotic methods earlier developed by the authors. The analysis is based on splitting the problem into two distinct parts: the problem for dry (nonlubricated) contacts and a problem for lubricated contacts. The bridge between the two problems is the asymptotic behavior of pressure in the vicinity of the end points of the contacts. More specifically, in the central part of the contact the solution of the EHL problem for functionally graded materials is close to the one for the dry contact of these materials while in the narrow zones near the inlet and exit points of the contact the lubrication effects become comparable to the effects due to the elasticity of the solids. This approach to the EHL problem solution reveals its structure.

References

1.
Kudish
,
I. I.
,
Volkov
,
S. S.
,
Vasiliev
,
A. S.
, and
Aizikovich
,
S. M.
,
2015
, “
Some Criteria for Coating Effectiveness in Heavily Loaded Line EHL Contacts. Part 1. Dry Contacts
,”
ASME J. Tribol.
,
138
(
2
), p.
021505
.
2.
Kudish
,
I. I.
,
Volkov
,
S. S.
,
Vasiliev
,
A. S.
, and
Aizikovich
,
S. M.
,
2015
, “
Some Criteria for Coating Effectiveness in Heavily Loaded Line EHL Contacts,” Part 2. Lubricated Contacts
,”
ASME J. Tribol.
,
138
(
2
), p.
021505
.
3.
Wang
,
Z.
,
Yu
,
C.
, and
Wang
,
Q.
,
2015
, “
Model of Elastohydrodynamic Lubrication for Multilayered Materials
,”
ASME J. Tribol.
,
137
(
1
), p.
011501
.
4.
Kudish
,
I. I.
,
2013
,
Elastohydrodynamic Lubrication for Line and Point Contacts. Asymptotic and Numerical Approaches
,
Chapman & Hall/CRC Press
,
Boca Raton, FL
.
5.
Kudish
,
I. I.
, and
Covitch
,
M. J.
,
2010
,
Modeling and Analytical Methods in Tribology
,
Chapman & Hall/CRC Press
,
Boca Raton, FL
.
6.
Aizikovich
,
S. M.
,
Alexandrov
,
V. M.
,
Kalker
,
J. J.
,
Krenev
,
L. I.
, and
Trubchik
,
I. S.
,
2002
, “
Analytical Solution of the Spherical Indentation Problem for a Half-Space With Gradients With the Depth Elastic Properties
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2745
2772
.
7.
Aizikovich
,
S. M.
,
Alexandrov
,
V. M.
, and
Trubchik
,
I. S.
,
2009
, “
Bilateral Asymptotic Solution of One Class of Dual Integral Eequations of the Static Contact Problems for the Foundations Inhomogeneous in Depth
,”
Operator Theory: Advances and Applications
,
Birkhauser Verlag
,
Basel, Switzerland
, p.
317
.
8.
Aizikovich
,
S. M.
, and
Vasiliev
,
A. S.
,
2013
, “
A Bilateral Asymptotic Method of Solving the Integral Equation of the Contact Problem for the Torsion of an Elastic Halfspace Inhomogeneous in Depth
,”
J. Appl. Math. Mech.
,
77
(
1
), pp.
91
97
.
9.
Volkov
,
S. S.
,
Aizikovich
,
S. M.
,
Wang
,
Y.-S.
, and
Fedotov
,
I. A.
,
2013
, “
Analytical Solution of Axisymmetric Contact Problem About Indentation of a Circular Indenter Into a Soft Functionally Graded Elastic Layer
,”
Acta Mech. Sin.
,
29
(
2
), pp.
196
201
.
10.
Vasiliev
,
A. S.
,
Volkov
,
S. S.
,
Aizikovich
,
S. M.
, and
Jeng
,
Y.-R.
,
2014
, “
Axisymmetric Contact Problems of the Theory of Elasticity for Inhomogeneous Layers
,”
ZAMM Z. Angew. Math. Mech.
,
94
(
9
), pp.
705
712
.
11.
Aizikovich
,
S. M.
,
Krenev
,
L. I.
, and
Trubchik
,
I. S.
,
2008
, “
The Deformation of a Half-Space With a Gradient Elastic Coating Under Arbitrary Axisymmetric Loading
,”
J. Appl. Math. Mech.
,
72
(
4
), pp.
461
467
.
12.
Aizikovich
,
S. M.
,
Vasiliev
,
A. S.
, and
Seleznev
,
N. M.
,
2010
, “
Inverse Analysis for Evaluation of the Shear Modulus of Inhomogeneous Media in Torsion Experiments
,”
Int. J. Eng. Sci.
,
48
(
10
), pp.
936
942
.
13.
King
,
R. B.
, and
O'Sullivan
,
T. C.
,
1987
, “
Sliding Contact Stresses in a Two-Dimensional Layered Elastic Halfspace
,”
Int. J. Solids Struct.
,
23
(
5
), pp.
581
597
.
14.
Nowell
,
D.
, and
Hills
,
D. A.
,
1988
, “
Contact Problems Incorporating Elastic Layers
,”
Int. J. Solids Struct.
,
24
(
1
), pp.
105
115
.
15.
Elsharkawy
,
A. A.
, and
Hamrock
,
B. J.
,
1994
, “
EHL of Coated Surfaces. Part I. Newtonian Results
,”
ASME J. Tribol.
,
116
(
1
), pp.
29
36
.
16.
Elsharkawy
,
A. A.
, and
Hamrock
,
B. J.
,
1994
, “
EHL of Coated Surfaces. Part II. Non-Newtonian Results
,”
ASME J. Tribol.
,
116
(
4
), pp.
786
793
.
17.
Elsharkawy
,
A. A.
,
Holmes
,
M. J. A.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2006
, “
Microelastohydrodynamic Lubrication of Coated Cylinders Using Coupled Differential Deflection Method
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
220
(
1
), pp.
29
41
.
18.
Jin
,
Z. M.
,
2000
, “
Elastohydrodynamic Lubrication of a Circular Point Contact for a Compliant Layered Surface Bonded to a Rigid Substrate, Part 1: Theoretical Formulation and Numerical Method
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
214
(
3
), pp.
267
279
.
19.
Jin
,
Z. M.
,
2000
, “
Elastohydrodynamic Lubrication of a Circular Point Contact for a Compliant Layered Surface Bonded to a Rigid Substrate, Part 2: Numerical Results
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
214
(
3
), pp.
281
289
.
20.
Guler
,
M. A.
, and
Erdogan
,
F.
,
2004
, “
Contact Mechanics of Graded Coatings
,”
Int. J. Solids Struct.
,
41
(
14
), pp.
3865
3889
.
21.
Chidlow
,
S. J.
,
Chong
,
W. W. F.
, and
Teodorescu
,
M.
,
2013
, “
On the Two-Dimensional Solution of Both Adhesive and Non-Adhesive Contact Problems Involving Functionally Graded Materials
,”
Eur. J. Mech., A/Solids
,
39
, pp.
86
103
.
22.
Giannakopoulos
,
A. E.
, and
Pallot
,
P.
,
2000
, “
Two-Dimensional Contact Analysis of Elastic Graded Materials
,”
J. Mech. Phys. Solids
,
48
(
8
), pp.
1597
1631
.
23.
Jin
,
F.
,
Guo
,
X.
, and
Gao
,
H.
,
2013
, “
Adhesive Contact on Power-Law Graded Elastic Solids: The JKR-DMT Transition Using a Double-Hertz Model
,”
J. Mech. Phys. Solids
,
61
(
12
), pp.
2473
2492
.
24.
Ke
,
L. L.
, and
Wang
,
Y. S.
,
2006
, “
Two-Dimensional Contact Mechanics of Functionally Graded Materials With Arbitrary Spatial Variations of Material Properties
,”
Int. J. Solids Struct.
,
43
(
18–19
), pp.
5779
5798
.
25.
Ke
,
L. L.
, and
Wang
,
Y. S.
,
2010
, “
Fretting Contact of Two Dissimilar Elastic Bodies With Functionally Graded Coatings
,”
Mech. Adv. Mater. Struct.
,
17
(
6
), pp.
433
447
.
26.
Aizikovich
,
S. M.
,
Alexandrov
,
V. M.
,
Belokon’
,
A. V.
,
Krenev
,
L. I.
, and
Trubchik
,
I. S.
,
2006
,
Contact Problems of Elasticity for Functionally Graded Materials
,
Fizmatlit
,
Moscow, Russia
.
27.
Hamrock
,
B. J.
,
1994
,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York
.
28.
Aizikovich
,
S. M.
, and
Aleksandrov
,
V. M.
,
1982
, “
Properties of Compliance Functions for Layered and Continuously Nonuniform Halfspace
,”
Soviet Phys. Dokl.
,
27
(
9
), pp.
765
767
.
29.
Alexandrov
,
V. M.
, and
Kovalenko
,
E. V.
,
1986
,
Problems of Continuous Mechanics With Mixed Boundary Conditions
,
Nauka Publisher
,
Moscow
,
334
p.
30.
Kevorkian
,
J.
, and
Cole
,
J. D.
,
1985
,
Perturbation Methods in Applied Mathematics
(Applied Mathematics Series), Vol.
34
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.